Research Article
BibTex RIS Cite

s-to-z Transformation Tool for Discretization

Year 2021, Volume: 9 Issue: 4, 773 - 783, 29.12.2021
https://doi.org/10.29109/gujsc.1003694

Abstract

The signals/systems in nature are analog in terms of their sources. These continuous-time signals/systems need to be discretized in order to be used in digital systems (processing, storage etc.). For this aim, different methods have been developed and continue to be developed. In the work carried out; a software tool with a user-friendly interface has been designed that performs discretization of continuous-time systems with different methods in a fast, accurate and effective manner, presents single or comparative results (parameters, responses, etc.) both numerically and graphically.

References

  • Katz P., (1981). Digital Control using Microprocessors. New Jersey: Prentice Hall.
  • Franklin G.F., Powell J.D., Workman M.L., (1998). Digital Control of Dynamic Systems. 3rd ed. California: Addison-Wesley Longman.
  • Al-Alaoui M.A., Novel stable higher order s-to-z transforms, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 48 No. 11 (2001) 1326-1329. doi: 10.1109/81.964421
  • Al-Alaoui M.A., Linear phase low pass IIR digital differentiators, IEEE Transactions on Signal Processing, 55 No. 2 (2007) 697-706. doi: 10.1109/TSP.2006.885741
  • Al-Alaoui M.A., Novel approach to analog-to-digital transforms, IEEE Transactions on Circuits and Systems-I: Regular Papers, 54 No. 2 (2007) 338-350. doi:10.1109/TCSI.2006.885982
  • Ádám T., Dadvandipour S., Futás, J., Influence of discretization method on the digital control system performance, Acta Montanistica Slovaca, 8 No. 4 (2003) 197-200.
  • Mirković D., Petković P., Litovski V., A second order s-to-z transform and its implementation to IIR filter design, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 33 No. 5 (2014) 1831-1843. doi: 10.1108/COMPEL-03-2014-0058
  • Paarmann L.D., Mapping from the s-domain to the z-domain via the magnitude-invariance method, Signal Processing, 69 No. 3 (1998) 219-228. doi: 10.1016/S0165-1684(98)00104-2
  • Paarmann L.D., Atris Y.H., Mapping from the s-domain to the z-domain via the phase-invariance method, Signal Processing, 86 No. 2 (2006) 223-229. doi: 10.1016/j.sigpro.2005.05.007
  • Schneider A.M., Kaneshige J.T., Groutage F.D., Higher order s-to-z mapping functions and their application in digitizing continuous-time filters, Proceedings of the IEEE, 79 No. 11 (1991) 1661-1674. doi: 10.1109/5.118990
  • James J.R., A survey of knowledge-based systems for computer-aided control system design, 1987 American Control Conference, Minneapolis (1987) 2156-2161. doi: 10.23919/ACC.1987.4789669
  • Kessler P., Schaufelberger W., Minitools for education in control system analysis and design, IFAC Proceedings Volumes, 24 No. 4 (1991) 441-446. doi: 10.1016/S1474-6670(17)54312-8
  • Prendergast D.P., Eydgahi A.M., 'EDCON': an educational control system analysis and design program, IEEE Transactions on Education, 36 No. 1 (1993) 42-44. doi: 10.1109/13.204814
  • Palopoli L., Abeni L., Buttazzo G., Conticelli F., Di Natale M., Real-time control system analysis: an integrated approach, Proceedings 21st IEEE Real-Time Systems Symposium, Orlando (2000) 131-140. doi: 10.1109/REAL.2000.896003
  • Lincoln B., Cervin A., JITTERBUG: a tool for analysis of real-time control performance, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas (2002) 1319-1324. doi: 10.1109/CDC.2002.1184698
  • Ang K.H., Chong G., Li Y., PID control system analysis, design, and technology, IEEE Transactions on Control Systems Technology, 13 No. 4 (2005) 559-576. doi: 10.1109/TCST.2005.847331
  • Vatansever F., Hatun M., Sistem analizi eğitim simülatörü tasarımı, 2nd International Symposium on Innovative Technologies in Engineering and Science (ISITES2014), Karabuk (2014) 546-550.
  • Hatun M., Vatansever F., Discrete time system simulator, 3rd International Symposium on Innovative Technologies in Engineering and Science (ISITES2015), Valencia (2015) 1807-1814.
  • Vatansever F., The design of transform simulator, 5th International Symposium on Innovative Technologies in Engineering and Science (ISITES2017), Baku (2017) 289-293.
  • Díaz J.M., Costa-Castelló R., Muñoz R., Dormido S., An interactive and comprehensive software tool to promote active learning in the loop shaping control system design, IEEE Access, 5 (2017) 10533-10546. doi: 10.1109/ACCESS.2017.2712520
  • Vatansever F., Yalcin N.A., e-Signals & Systems: A web-based educational tool for signals and systems, Computer Applications in Engineering Education, 25 No. 4 (2017) 625-641. doi: 10.1002/cae.21826
  • The MathWorks Inc. (2018). MATLAB , App Designer.
  • Vatansever F., (2018). Sayısal Hesaplama ve Programlama. Ankara: Seçkin Yayıncılık.
  • Hori N., Cormier R., Kanai K., On matched pole-zero discrete-time models, IEE Proceedings D: Control Theory and Applications, 139 No. 3 (1992) 273-278. doi: 10.1049/ip-d.1992.0036
  • Hartley T.T., Comments on “On the nature of the Boxer-Thaler and Madwed integrators and their applications in digitizing a continuous-time system”, IEEE Transactions on Automatic Control, 37 No. 5 (1992) 702-704. doi: 10.1109/9.135524
  • Al-Alaoui M.A., Novel approach to designing digital differentiators, Electronics Letters, 28 No. 15 (1992) 1376-1378. doi: 10.1049/el:19920875
  • Al-Alaoui M.A., Novel digital integrator and differentiator, Electronics Letters, 29 No. 4 (1993) 376-378. doi: 10.1049/el:19930253
  • Al-Alaoui M.A., Novel IIR differentiator from the Simpson integration rule, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 41 No. 2 (1994) 186-187. doi: 10.1109/81.269060
  • Al-Alaoui M.A., A class of second-order integrators and low-pass differentiators, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 42(4) (1995) 220-223. doi: 10.1109/81.382477
  • Al-Alaoui M.A., A class of numerical integration rules with first order derivatives, ACM Signum Newsletter, 31 No. 2 (1996) 25-44. doi: 10.1145/230922.230930
  • Al-Alaoui M.A., Filling the gap between the bilinear and the backward-difference transforms: an interactive design approach, International Journal of Electrical Engineering & Education, 34 No. 4 (1997) 331-337. doi: 10.1177/002072099703400405
  • Al-Alaoui M.A., Al-Alaoui operator and the α-approximation for discretization of analog systems, Facta Universitatis, Ser.: Elec. and Energ., 19 No. 1 (2006) 143-146. doi: 10.2298/FUEE0601143A
  • Al-Alaoui M.A., Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems, Electrical Engineering, 90 No. 6 (2008) 455-467. doi: 10.1007/s00202-007-0092-0
  • Al-Alaoui M.A., Class of digital integrators and differentiators, IET Signal Processing, 5 No. 2 (2011) 251-260. doi: 10.1049/iet-spr.2010.0107
  • Al-Alaoui M.A., Baydoun M., Yaacoub E., Confluence of pattern recognition and signal processing: application of Al-Alaoui pattern recognition algorithm to digital filters design, IET Signal Processing, 9 No. 6 (2015) 498-505. doi: 10.1049/iet-spr.2014.0377
  • Auger F., Some new developments on the Al-Alaoui and the Pei and Hsu s-to-z transforms, IEEE Transactions on Signal Processing, 57 No. 6 (2010) 471-475. doi: 10.1109/TCSII.2010.2048350
  • Chen C.M., Liu F.H., The discrete-time equivalent of an analogue controller by a compensated approach, International Journal of Systems Science, 32 No. 3 (2001) 287-294. doi: 10.1080/002077201300029566
  • Chen C.M., Liu F.H., The discrete-time equivalent of an analogue controller by the parabolic approach, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 215 No. 1 (2001) 29-36. doi:10.1243/0959651011539178
  • Georgiev V., Some applied aspects of rational higher order s-z transformations, Radioengineering, 7 No. 1 (1998) 19-26.
  • Gupta M., Jain M., Kumar B., Novel class of stable wideband recursive digital integrators and differentiators, IET Signal Processing, 4 No. 5 (2010) 560-566. doi: 10.1049/iet-spr.2009.0030
  • Gupta M., Jain M., Kumar B., Recursive wideband digital integrator and differentiator, International Journal of Circuit Theory and Applications, 39 No. 7 (2011) 775-782. doi: 10.1002/cta.658
  • Gupta M., Jain M., Kumar B., Wideband digital integrator and differentiator, IETE Journal of Research, 58 No. 2 (2012) 166-170. doi: 10.4103/0377-2063.96175
  • Hamming R.W., (1989). Digital Filters. 3rd ed. New Jersey: Prentice Hall.
  • Kowalczuk Z., Discrete approximation of continuous-time systems: a survey, IEE Proceedings–G (Circuits, Devices and Systems), 140 No. 4 (1993) 264-278. doi: 10.1049/ip-g-2.1993.0045
  • Le Bihan J., Novel class of digital integrators and differentiators, Electronics Letters, 29 No. 11 (1993) 971-973. doi: 10.1049/el:19930647
  • Ngo N.Q., A new approach for the design of wideband digital integrator and differentiator, IEEE Transactions on Circuits and Systems–II: Express Briefs, 53 No. 9 (2006) 936-940. doi: 10.1109/TCSII.2006.881806
  • Papamarkos N., Chamzas C., A new approach for the design of digital integrators, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 43 No. 9 (1996) 785-791. doi: 10.1109/81.536749
  • Šekara T.B., Stojić M.R., Application of the α-approximation for discretization of analogue systems, Facta Universitatis, Ser.: Elec. and Energ., 18 No. 3 (2005) 571-586. doi: 10.2298/FUEE0503571S
  • Šekara T.B., New transformation polynomials for discretization of analogue systems, Electrical Engineering, 89 No. 2 (2006) 137-147. doi: 10.1007/s00202-005-0322-2
  • Tseng C.-C., Digital integrator design using Simpson rule and fractional delay filter, IEE Proceedings of Vision, Image and Signal Processing, 153 No. 1 (2006) 79-85. doi: 10.1049/ip-vis:20045208
  • Upadhyay D.K., Recursive wideband digital differentiators, Electronics Letters, 46 No. 25 (2010) 1661-1662. doi: 10.1049/el.2010.2113
  • Upadhyay D.K., Class of recursive wideband digital differentiators and integrators, Radioengineering, 21 No. 3 (2012) 904-910.
  • Upadhyay D.K., Recursive wideband linear phase digital differentiators and integrators, 2015 International Conference on Computing Communication Control and Automation, Pune (2015) 927-931. doi: 10.1109/ICCUBEA.2015.184
  • Upadhyay D.K., Singh R.K., Recursive wideband digital differentiator and integrator, Electronics Letters, 47 No. 11 (2011) 647-648. doi: 10.1049/el.2011.0420
  • Wang C.-H., Lin M.-Y., Teng C.-C., On the nature of the Boxer-Thaler and Madwed integrators and their applications in digitizing a continuous-time system, IEEE Transactions on Automatic Control, 35 No. 10 (1990) 1163-1167. doi: 10.1109/9.58563
Year 2021, Volume: 9 Issue: 4, 773 - 783, 29.12.2021
https://doi.org/10.29109/gujsc.1003694

Abstract

References

  • Katz P., (1981). Digital Control using Microprocessors. New Jersey: Prentice Hall.
  • Franklin G.F., Powell J.D., Workman M.L., (1998). Digital Control of Dynamic Systems. 3rd ed. California: Addison-Wesley Longman.
  • Al-Alaoui M.A., Novel stable higher order s-to-z transforms, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 48 No. 11 (2001) 1326-1329. doi: 10.1109/81.964421
  • Al-Alaoui M.A., Linear phase low pass IIR digital differentiators, IEEE Transactions on Signal Processing, 55 No. 2 (2007) 697-706. doi: 10.1109/TSP.2006.885741
  • Al-Alaoui M.A., Novel approach to analog-to-digital transforms, IEEE Transactions on Circuits and Systems-I: Regular Papers, 54 No. 2 (2007) 338-350. doi:10.1109/TCSI.2006.885982
  • Ádám T., Dadvandipour S., Futás, J., Influence of discretization method on the digital control system performance, Acta Montanistica Slovaca, 8 No. 4 (2003) 197-200.
  • Mirković D., Petković P., Litovski V., A second order s-to-z transform and its implementation to IIR filter design, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 33 No. 5 (2014) 1831-1843. doi: 10.1108/COMPEL-03-2014-0058
  • Paarmann L.D., Mapping from the s-domain to the z-domain via the magnitude-invariance method, Signal Processing, 69 No. 3 (1998) 219-228. doi: 10.1016/S0165-1684(98)00104-2
  • Paarmann L.D., Atris Y.H., Mapping from the s-domain to the z-domain via the phase-invariance method, Signal Processing, 86 No. 2 (2006) 223-229. doi: 10.1016/j.sigpro.2005.05.007
  • Schneider A.M., Kaneshige J.T., Groutage F.D., Higher order s-to-z mapping functions and their application in digitizing continuous-time filters, Proceedings of the IEEE, 79 No. 11 (1991) 1661-1674. doi: 10.1109/5.118990
  • James J.R., A survey of knowledge-based systems for computer-aided control system design, 1987 American Control Conference, Minneapolis (1987) 2156-2161. doi: 10.23919/ACC.1987.4789669
  • Kessler P., Schaufelberger W., Minitools for education in control system analysis and design, IFAC Proceedings Volumes, 24 No. 4 (1991) 441-446. doi: 10.1016/S1474-6670(17)54312-8
  • Prendergast D.P., Eydgahi A.M., 'EDCON': an educational control system analysis and design program, IEEE Transactions on Education, 36 No. 1 (1993) 42-44. doi: 10.1109/13.204814
  • Palopoli L., Abeni L., Buttazzo G., Conticelli F., Di Natale M., Real-time control system analysis: an integrated approach, Proceedings 21st IEEE Real-Time Systems Symposium, Orlando (2000) 131-140. doi: 10.1109/REAL.2000.896003
  • Lincoln B., Cervin A., JITTERBUG: a tool for analysis of real-time control performance, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas (2002) 1319-1324. doi: 10.1109/CDC.2002.1184698
  • Ang K.H., Chong G., Li Y., PID control system analysis, design, and technology, IEEE Transactions on Control Systems Technology, 13 No. 4 (2005) 559-576. doi: 10.1109/TCST.2005.847331
  • Vatansever F., Hatun M., Sistem analizi eğitim simülatörü tasarımı, 2nd International Symposium on Innovative Technologies in Engineering and Science (ISITES2014), Karabuk (2014) 546-550.
  • Hatun M., Vatansever F., Discrete time system simulator, 3rd International Symposium on Innovative Technologies in Engineering and Science (ISITES2015), Valencia (2015) 1807-1814.
  • Vatansever F., The design of transform simulator, 5th International Symposium on Innovative Technologies in Engineering and Science (ISITES2017), Baku (2017) 289-293.
  • Díaz J.M., Costa-Castelló R., Muñoz R., Dormido S., An interactive and comprehensive software tool to promote active learning in the loop shaping control system design, IEEE Access, 5 (2017) 10533-10546. doi: 10.1109/ACCESS.2017.2712520
  • Vatansever F., Yalcin N.A., e-Signals & Systems: A web-based educational tool for signals and systems, Computer Applications in Engineering Education, 25 No. 4 (2017) 625-641. doi: 10.1002/cae.21826
  • The MathWorks Inc. (2018). MATLAB , App Designer.
  • Vatansever F., (2018). Sayısal Hesaplama ve Programlama. Ankara: Seçkin Yayıncılık.
  • Hori N., Cormier R., Kanai K., On matched pole-zero discrete-time models, IEE Proceedings D: Control Theory and Applications, 139 No. 3 (1992) 273-278. doi: 10.1049/ip-d.1992.0036
  • Hartley T.T., Comments on “On the nature of the Boxer-Thaler and Madwed integrators and their applications in digitizing a continuous-time system”, IEEE Transactions on Automatic Control, 37 No. 5 (1992) 702-704. doi: 10.1109/9.135524
  • Al-Alaoui M.A., Novel approach to designing digital differentiators, Electronics Letters, 28 No. 15 (1992) 1376-1378. doi: 10.1049/el:19920875
  • Al-Alaoui M.A., Novel digital integrator and differentiator, Electronics Letters, 29 No. 4 (1993) 376-378. doi: 10.1049/el:19930253
  • Al-Alaoui M.A., Novel IIR differentiator from the Simpson integration rule, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 41 No. 2 (1994) 186-187. doi: 10.1109/81.269060
  • Al-Alaoui M.A., A class of second-order integrators and low-pass differentiators, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 42(4) (1995) 220-223. doi: 10.1109/81.382477
  • Al-Alaoui M.A., A class of numerical integration rules with first order derivatives, ACM Signum Newsletter, 31 No. 2 (1996) 25-44. doi: 10.1145/230922.230930
  • Al-Alaoui M.A., Filling the gap between the bilinear and the backward-difference transforms: an interactive design approach, International Journal of Electrical Engineering & Education, 34 No. 4 (1997) 331-337. doi: 10.1177/002072099703400405
  • Al-Alaoui M.A., Al-Alaoui operator and the α-approximation for discretization of analog systems, Facta Universitatis, Ser.: Elec. and Energ., 19 No. 1 (2006) 143-146. doi: 10.2298/FUEE0601143A
  • Al-Alaoui M.A., Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems, Electrical Engineering, 90 No. 6 (2008) 455-467. doi: 10.1007/s00202-007-0092-0
  • Al-Alaoui M.A., Class of digital integrators and differentiators, IET Signal Processing, 5 No. 2 (2011) 251-260. doi: 10.1049/iet-spr.2010.0107
  • Al-Alaoui M.A., Baydoun M., Yaacoub E., Confluence of pattern recognition and signal processing: application of Al-Alaoui pattern recognition algorithm to digital filters design, IET Signal Processing, 9 No. 6 (2015) 498-505. doi: 10.1049/iet-spr.2014.0377
  • Auger F., Some new developments on the Al-Alaoui and the Pei and Hsu s-to-z transforms, IEEE Transactions on Signal Processing, 57 No. 6 (2010) 471-475. doi: 10.1109/TCSII.2010.2048350
  • Chen C.M., Liu F.H., The discrete-time equivalent of an analogue controller by a compensated approach, International Journal of Systems Science, 32 No. 3 (2001) 287-294. doi: 10.1080/002077201300029566
  • Chen C.M., Liu F.H., The discrete-time equivalent of an analogue controller by the parabolic approach, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 215 No. 1 (2001) 29-36. doi:10.1243/0959651011539178
  • Georgiev V., Some applied aspects of rational higher order s-z transformations, Radioengineering, 7 No. 1 (1998) 19-26.
  • Gupta M., Jain M., Kumar B., Novel class of stable wideband recursive digital integrators and differentiators, IET Signal Processing, 4 No. 5 (2010) 560-566. doi: 10.1049/iet-spr.2009.0030
  • Gupta M., Jain M., Kumar B., Recursive wideband digital integrator and differentiator, International Journal of Circuit Theory and Applications, 39 No. 7 (2011) 775-782. doi: 10.1002/cta.658
  • Gupta M., Jain M., Kumar B., Wideband digital integrator and differentiator, IETE Journal of Research, 58 No. 2 (2012) 166-170. doi: 10.4103/0377-2063.96175
  • Hamming R.W., (1989). Digital Filters. 3rd ed. New Jersey: Prentice Hall.
  • Kowalczuk Z., Discrete approximation of continuous-time systems: a survey, IEE Proceedings–G (Circuits, Devices and Systems), 140 No. 4 (1993) 264-278. doi: 10.1049/ip-g-2.1993.0045
  • Le Bihan J., Novel class of digital integrators and differentiators, Electronics Letters, 29 No. 11 (1993) 971-973. doi: 10.1049/el:19930647
  • Ngo N.Q., A new approach for the design of wideband digital integrator and differentiator, IEEE Transactions on Circuits and Systems–II: Express Briefs, 53 No. 9 (2006) 936-940. doi: 10.1109/TCSII.2006.881806
  • Papamarkos N., Chamzas C., A new approach for the design of digital integrators, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 43 No. 9 (1996) 785-791. doi: 10.1109/81.536749
  • Šekara T.B., Stojić M.R., Application of the α-approximation for discretization of analogue systems, Facta Universitatis, Ser.: Elec. and Energ., 18 No. 3 (2005) 571-586. doi: 10.2298/FUEE0503571S
  • Šekara T.B., New transformation polynomials for discretization of analogue systems, Electrical Engineering, 89 No. 2 (2006) 137-147. doi: 10.1007/s00202-005-0322-2
  • Tseng C.-C., Digital integrator design using Simpson rule and fractional delay filter, IEE Proceedings of Vision, Image and Signal Processing, 153 No. 1 (2006) 79-85. doi: 10.1049/ip-vis:20045208
  • Upadhyay D.K., Recursive wideband digital differentiators, Electronics Letters, 46 No. 25 (2010) 1661-1662. doi: 10.1049/el.2010.2113
  • Upadhyay D.K., Class of recursive wideband digital differentiators and integrators, Radioengineering, 21 No. 3 (2012) 904-910.
  • Upadhyay D.K., Recursive wideband linear phase digital differentiators and integrators, 2015 International Conference on Computing Communication Control and Automation, Pune (2015) 927-931. doi: 10.1109/ICCUBEA.2015.184
  • Upadhyay D.K., Singh R.K., Recursive wideband digital differentiator and integrator, Electronics Letters, 47 No. 11 (2011) 647-648. doi: 10.1049/el.2011.0420
  • Wang C.-H., Lin M.-Y., Teng C.-C., On the nature of the Boxer-Thaler and Madwed integrators and their applications in digitizing a continuous-time system, IEEE Transactions on Automatic Control, 35 No. 10 (1990) 1163-1167. doi: 10.1109/9.58563
There are 55 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Fahri Vatansever 0000-0002-3885-8622

Metin Hatun 0000-0003-0279-5508

Publication Date December 29, 2021
Submission Date October 1, 2021
Published in Issue Year 2021 Volume: 9 Issue: 4

Cite

APA Vatansever, F., & Hatun, M. (2021). s-to-z Transformation Tool for Discretization. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 9(4), 773-783. https://doi.org/10.29109/gujsc.1003694

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526