Research Article
BibTex RIS Cite

The Effects of Cutting Parameters Used in Milling X153CrMoV12 Cold Work Tool Steel by End Mills on Surface Roughness and Hardness of The Workpiece

Year 2022, Volume: 10 Issue: 1, 27 - 38, 30.03.2022
https://doi.org/10.29109/gujsc.1017383

Abstract

The aim of this work is to investigate the effect of the spindle speed and feed rate used in milling X153CrMoV12 cold work steel by X5070 blue coated solid carbide end mill on surface roughness and hardness of the workpiece. For this purpose, 0.2 mm material was removed in one pass without using refrigerant with the machining parameters of 2000, 2500, 2800, 3000 rpm spindle speed and 160, 180, 200, 240 mm/min feed rate. As a result of the tests, the topographic structure, surface roughness, surface hardness and microhardness of the machined surfaces were determined by Leica DMS300, Mitutoyo SJ 210, HRS-150 digital rockwell hardness tester and microhardness tester Future-Tech FM-700, respectively. As the feed rate increased at a constant 2800 rpm spindle speed, the surface roughness increased as the amount of metal removed per unit time increased. Surface roughness decreased at constant 180 mm/min feed rate and high spindle speed values. The effects of spindle speed and feed rate machining parameters on the surface hardness were not much, and the hardness value before and after the process was measured between 60-62 HRC. However, it was determined that the microhardness value decreased due to the use of heat-hardened steel as well as the heat generated by the milling parameters in the regions 50-350 µm deep from the machined surface.

References

  • 1. Agarwal, A., & Desai, K. A. (2020). Effect of Workpiece Curvature on Axial Surface Error Profile in Flat End-Milling of Thin-walled Components. Procedia Manufacturing, 48, 498-507.
  • 2. Gowthaman, S., & Jagadeesha, T. Experimental study on the surface and interface phenomenon changes by means of contact angle measurement on slot milled nimonic 263 alloy. (2021). Materials Letters, 285, 129122.
  • 3. Han, J., Hao, X., Li, L., Liu, L., Chen, N., Zhao, G., & He, N. (2020). Investigation on surface quality and burr generation of high aspect ratio (HAR) micro-milled grooves. Journal of Manufacturing Processes, 52, 35-43.
  • 4. Tamura, S., & Matsumura, T. (2020). Cutting Force Simulation in Milling of Tapered Wall with Barrel End Mill. Procedia Manufacturing, 47, 466-471.
  • 5. Tröber, P., Weiss, H. A., Kopp, T., Golle, R., & Volk, W. (2017). On the correlation between thermoelectricity and adhesive tool wear during blanking of aluminum sheets. International Journal of Machine Tools and Manufacture, 118, 91-97.
  • 6. Cao, J., Brinksmeier, E., Fu, M., Gao, R. X., Liang, B., Merklein, M., ... & Yanagimoto, J. (2019). Manufacturing of advanced smart tooling for metal forming. CIRP Annals, 68(2), 605-628.
  • 7. Abraham, T., Bräuer, G., Flegler, F., Groche, P., & Demmler, M. (2020). Dry sheet metal forming of aluminum by smooth DLC coatings–a capable approach for an efficient production process with reduced environmental impact. Procedia Manufacturing, 43, 642-649.
  • 8. Rathmann, L., & Vollertsen, F. (2020). Determination of a contact length dependent friction function in micro metal forming. Journal of Materials Processing Technology, 286, 116831.
  • 9. Lenz, B., Hasselbruch, H., Großmann, H., & Mehner, A. (2020). Application of CNN networks for an automatic determination of critical loads in scratch tests on aC: H: W coatings. Surface and Coatings Technology, 393, 125764.
  • 10. Vellingiri, S., Soundararajan, R., Mohankumar, N., Nithyananthakumar, K., & Muthuselvam, K. (2020). Exploration on WEDM process parameters effect on LM13 alloy and LM13/SiC composites using Taguchi method. Materials Today: Proceedings.
  • 11. Johny, A., & Thiagarajan, C. (2021). Investigation of surface integrity and it’s optimization on pure titanium using molybdenum wire by reciprocated travelling WEDM–A review. Materials Today: Proceedings, 33, 2581-2584.
  • 12. Pramanick, A., Mandal, S., Dey, P. P., & Das, P. K. (2021). Comparative analysis for the prediction of WEDM responses for machining spark plasma sintered boron carbide ceramic sample by RSM and ANFIS. Materials Today: Proceedings, 41, 1089-1095.
  • 13. Lima, J. G., Avila, R. F., Abrao, A. M., Faustino, M., & Davim, J. P. (2005). Hard turning: AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel. Journal of Materials Processing Technology, 169(3), 388-395.
  • 14. Da Silva Campos, P. H., de Carvalho Paes, V., de Carvalho Gonçalves, E. D., Ferreira, J. R., Balestrassi, P. P., & da Silva, J. P. D. T. (2019). Optimizing production in machining of hardened steels using response surface methodology. Acta Scientiarum. Technology, 41, e38091-e38091.
  • 15. Vardhan, M. V., Sankaraiah, G., & Yohan, M. (2018). Prediction of surface roughness & material removal rate for machining of P20 steel in CNC milling using artificial neural networks. Materials Today: Proceedings, 5(9), 18376-18382.
  • 16. Shokrani, A., Dhokia, V., & Newman, S. T. (2016). Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti–6Al–4V titanium alloy. Journal of Manufacturing Processes, 21, 172-179.
  • 17. Xu, J., Ji, M., Davim, J. P., Chen, M., El Mansori, M., & Krishnaraj, V. (2020). Comparative study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills. Composite Structures, 234, 111727.
  • 18. Peña-Parás, L., Maldonado-Cortés, D., Rodríguez-Villalobos, M., Romero-Cantú, A. G., & Montemayor, O. E. (2020). Enhancing tool life, and reducing power consumption and surface roughness in milling processes by nanolubricants and laser surface texturing. Journal of Cleaner Production, 253, 119836.
  • 19. Kulkarni, H. B., Nadakatti, M. M., Kulkarni, S. C., & Kulkarni, R. M. (2020). Investigations on effect of nanofluid based minimum quantity lubrication technique for surface milling of Al7075-T6 aerospace alloy. Materials Today: Proceedings, 27, 251-256.
  • 20. Zahaf, M. Z., & Benghersallah, M. (2021). Surface roughness and vibration analysis in end milling of annealed and hardened bearing steel. Measurement: Sensors, 13, 100035.
  • 21. Correia, A. E., & Davim, J. P. (2011). Surface roughness measurement in turning carbon steel AISI 1045 using wiper inserts. Measurement, 44(5), 1000-1005.
  • 22. Festas, A. J., Pereira, R. B., Ramos, A., & Davim, J. P. (2021). A study of the effect of conventional drilling and helical milling in surface quality in titanium Ti-6Al-4V and Ti-6AL-7Nb alloys for medical applications. Arabian Journal for Science and Engineering, 46(3), 2361-2369.
  • 23. Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009). Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials, 27(4), 754-763.
  • 24. Brezocnik, M., Kovacic, M., & Ficko, M. (2004). Prediction of surface roughness with genetic programming. Journal of materials processing technology, 157, 28-36.
  • 25. Kalidass, S., & Palanisamy, P. (2014). Prediction of surface roughness for AISI 304 steel with solid carbide tools in end milling process using regression and ANN models. Arabian Journal for Science and Engineering, 39(11), 8065-8075.
  • 26. Hassanpour, H., Sadeghi, M. H., Rasti, A., & Shajari, S. (2016). Investigation of surface roughness, microhardness and white layer thickness in hard milling of AISI 4340 using minimum quantity lubrication. Journal of Cleaner Production, 120, 124-134.
  • 27. Zheng, G., Cheng, X., Dong, Y., Liu, H., & Yu, Y. (2020). Surface integrity evaluation of high-strength steel with a TiCN-NbC composite coated tool by dry milling. Measurement, 166, 108204.
  • 28. Pereira, J. C. C., Rodrigues, P. C. M., & Abrao, A. M. (2017). The surface integrity of AISI 1010 and AISI 4340 steels subjected to face milling. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10), 4069-4080.
  • 29. Lu, X., Jia, Z., Wang, H., Feng, Y., & Liang, S. Y. (2019). The effect of cutting parameters on micro-hardness and the prediction of Vickers hardness based on a response surface methodology for micro-milling Inconel 718. Measurement, 140, 56-62.
  • 30. Lou, M. S., Chen, J. C., & Li, C. M. (1999). Surface roughness prediction technique for CNC end-milling, Journal of Industrial Technology, 15 (1), 1-6.
Year 2022, Volume: 10 Issue: 1, 27 - 38, 30.03.2022
https://doi.org/10.29109/gujsc.1017383

Abstract

References

  • 1. Agarwal, A., & Desai, K. A. (2020). Effect of Workpiece Curvature on Axial Surface Error Profile in Flat End-Milling of Thin-walled Components. Procedia Manufacturing, 48, 498-507.
  • 2. Gowthaman, S., & Jagadeesha, T. Experimental study on the surface and interface phenomenon changes by means of contact angle measurement on slot milled nimonic 263 alloy. (2021). Materials Letters, 285, 129122.
  • 3. Han, J., Hao, X., Li, L., Liu, L., Chen, N., Zhao, G., & He, N. (2020). Investigation on surface quality and burr generation of high aspect ratio (HAR) micro-milled grooves. Journal of Manufacturing Processes, 52, 35-43.
  • 4. Tamura, S., & Matsumura, T. (2020). Cutting Force Simulation in Milling of Tapered Wall with Barrel End Mill. Procedia Manufacturing, 47, 466-471.
  • 5. Tröber, P., Weiss, H. A., Kopp, T., Golle, R., & Volk, W. (2017). On the correlation between thermoelectricity and adhesive tool wear during blanking of aluminum sheets. International Journal of Machine Tools and Manufacture, 118, 91-97.
  • 6. Cao, J., Brinksmeier, E., Fu, M., Gao, R. X., Liang, B., Merklein, M., ... & Yanagimoto, J. (2019). Manufacturing of advanced smart tooling for metal forming. CIRP Annals, 68(2), 605-628.
  • 7. Abraham, T., Bräuer, G., Flegler, F., Groche, P., & Demmler, M. (2020). Dry sheet metal forming of aluminum by smooth DLC coatings–a capable approach for an efficient production process with reduced environmental impact. Procedia Manufacturing, 43, 642-649.
  • 8. Rathmann, L., & Vollertsen, F. (2020). Determination of a contact length dependent friction function in micro metal forming. Journal of Materials Processing Technology, 286, 116831.
  • 9. Lenz, B., Hasselbruch, H., Großmann, H., & Mehner, A. (2020). Application of CNN networks for an automatic determination of critical loads in scratch tests on aC: H: W coatings. Surface and Coatings Technology, 393, 125764.
  • 10. Vellingiri, S., Soundararajan, R., Mohankumar, N., Nithyananthakumar, K., & Muthuselvam, K. (2020). Exploration on WEDM process parameters effect on LM13 alloy and LM13/SiC composites using Taguchi method. Materials Today: Proceedings.
  • 11. Johny, A., & Thiagarajan, C. (2021). Investigation of surface integrity and it’s optimization on pure titanium using molybdenum wire by reciprocated travelling WEDM–A review. Materials Today: Proceedings, 33, 2581-2584.
  • 12. Pramanick, A., Mandal, S., Dey, P. P., & Das, P. K. (2021). Comparative analysis for the prediction of WEDM responses for machining spark plasma sintered boron carbide ceramic sample by RSM and ANFIS. Materials Today: Proceedings, 41, 1089-1095.
  • 13. Lima, J. G., Avila, R. F., Abrao, A. M., Faustino, M., & Davim, J. P. (2005). Hard turning: AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel. Journal of Materials Processing Technology, 169(3), 388-395.
  • 14. Da Silva Campos, P. H., de Carvalho Paes, V., de Carvalho Gonçalves, E. D., Ferreira, J. R., Balestrassi, P. P., & da Silva, J. P. D. T. (2019). Optimizing production in machining of hardened steels using response surface methodology. Acta Scientiarum. Technology, 41, e38091-e38091.
  • 15. Vardhan, M. V., Sankaraiah, G., & Yohan, M. (2018). Prediction of surface roughness & material removal rate for machining of P20 steel in CNC milling using artificial neural networks. Materials Today: Proceedings, 5(9), 18376-18382.
  • 16. Shokrani, A., Dhokia, V., & Newman, S. T. (2016). Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti–6Al–4V titanium alloy. Journal of Manufacturing Processes, 21, 172-179.
  • 17. Xu, J., Ji, M., Davim, J. P., Chen, M., El Mansori, M., & Krishnaraj, V. (2020). Comparative study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills. Composite Structures, 234, 111727.
  • 18. Peña-Parás, L., Maldonado-Cortés, D., Rodríguez-Villalobos, M., Romero-Cantú, A. G., & Montemayor, O. E. (2020). Enhancing tool life, and reducing power consumption and surface roughness in milling processes by nanolubricants and laser surface texturing. Journal of Cleaner Production, 253, 119836.
  • 19. Kulkarni, H. B., Nadakatti, M. M., Kulkarni, S. C., & Kulkarni, R. M. (2020). Investigations on effect of nanofluid based minimum quantity lubrication technique for surface milling of Al7075-T6 aerospace alloy. Materials Today: Proceedings, 27, 251-256.
  • 20. Zahaf, M. Z., & Benghersallah, M. (2021). Surface roughness and vibration analysis in end milling of annealed and hardened bearing steel. Measurement: Sensors, 13, 100035.
  • 21. Correia, A. E., & Davim, J. P. (2011). Surface roughness measurement in turning carbon steel AISI 1045 using wiper inserts. Measurement, 44(5), 1000-1005.
  • 22. Festas, A. J., Pereira, R. B., Ramos, A., & Davim, J. P. (2021). A study of the effect of conventional drilling and helical milling in surface quality in titanium Ti-6Al-4V and Ti-6AL-7Nb alloys for medical applications. Arabian Journal for Science and Engineering, 46(3), 2361-2369.
  • 23. Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009). Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials, 27(4), 754-763.
  • 24. Brezocnik, M., Kovacic, M., & Ficko, M. (2004). Prediction of surface roughness with genetic programming. Journal of materials processing technology, 157, 28-36.
  • 25. Kalidass, S., & Palanisamy, P. (2014). Prediction of surface roughness for AISI 304 steel with solid carbide tools in end milling process using regression and ANN models. Arabian Journal for Science and Engineering, 39(11), 8065-8075.
  • 26. Hassanpour, H., Sadeghi, M. H., Rasti, A., & Shajari, S. (2016). Investigation of surface roughness, microhardness and white layer thickness in hard milling of AISI 4340 using minimum quantity lubrication. Journal of Cleaner Production, 120, 124-134.
  • 27. Zheng, G., Cheng, X., Dong, Y., Liu, H., & Yu, Y. (2020). Surface integrity evaluation of high-strength steel with a TiCN-NbC composite coated tool by dry milling. Measurement, 166, 108204.
  • 28. Pereira, J. C. C., Rodrigues, P. C. M., & Abrao, A. M. (2017). The surface integrity of AISI 1010 and AISI 4340 steels subjected to face milling. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10), 4069-4080.
  • 29. Lu, X., Jia, Z., Wang, H., Feng, Y., & Liang, S. Y. (2019). The effect of cutting parameters on micro-hardness and the prediction of Vickers hardness based on a response surface methodology for micro-milling Inconel 718. Measurement, 140, 56-62.
  • 30. Lou, M. S., Chen, J. C., & Li, C. M. (1999). Surface roughness prediction technique for CNC end-milling, Journal of Industrial Technology, 15 (1), 1-6.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Ferhat Ceritbinmez 0000-0002-5615-3124

Erdoğan Kanca 0000-0002-7997-9631

Early Pub Date March 22, 2022
Publication Date March 30, 2022
Submission Date November 1, 2021
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Ceritbinmez, F., & Kanca, E. (2022). The Effects of Cutting Parameters Used in Milling X153CrMoV12 Cold Work Tool Steel by End Mills on Surface Roughness and Hardness of The Workpiece. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(1), 27-38. https://doi.org/10.29109/gujsc.1017383

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526