BibTex RIS Cite

-

Year 2015, Volume: 3 Issue: 3, 545 - 553, 27.10.2015

Abstract

As one of the most important results of Oil Crisis in 1973 it has been understood that the natural sources are exhaustible and they ought to be consumed efficiently as much as possible. With discussion about Global Warming within the scope of scientific literature since 1980s “Energy Efficiency” became one of the most popular research topics until today. Since the buildings are responsible for 32% of total energy consumption energy efficient design of the building envelopes became more than an issue. As concrete is the most widely used construction material determining its thermal conductivity value by means of different techniques and experimental studies plays key role in energy efficient designing of buildings. Therefore, this study concerns with the evaluation of concrete building elements from thermal insulation viewpoint

References

  • British Cement Association (1999). Concrete through the Ages from 7000 BC to AD 2000. Birleşik Krallık: BCA. p. 37.
  • Neville A.M., Brooks J.J. (2010). Concrete Technology 2nd Ed., Harlow: Pearson Ed. Ltd.
  • International Code Council (2006). Concrete Manual: Conrete Quality and Field Practices 1st Ed., (Cengage Learning), ss.3.
  • Newman, J., Choo B.S. (2003). Advanced Concrete Technology – Concrete Properties, ElsevierLtd.
  • Mehta, P.K. (1986). Concrete Structure, Properties and Materials, Prentice Hall Inc. ss. 1-16.
  • Buildings Energy Databook (Online, 10.05.2014), http://buildingsdatabook.eren.doe.gov
  • American Society of Heating, Refrigerating, and Air Conditioning Handbook of Fundamentals.Atlanta, ABD. (2001).
  • ASTM Standard C 168-97 (1997). Terminology relating to thermal insulating materials, 1997.
  • Thermal Insulation Association of Canada (2013). Mechanical Insulation Best Practices Guide (Online, Access: 15.06.2014)
  • http://www.tiac.ca/downloads/best-practices
  • guide/BestPracticesGuide_E.pdf
  • Al-Homoud, M.S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment 40 ss. 353–366.
  • Al-Jabri K.S., Hago A.W., Al-Nuaimi A.S., Al- Saidy A.H. (2005). Concrete blocks for thermal insulation in hot climate. Cement and Concrete Research Vol. 35, Iss. 8, ss. 1472-1479
  • Saygılı A., Baykal G.(2011). A new method for improving the thermal insulation properties of fly ash Energy and Buildings Volume 43, Issue 11 ss. 3236–3242.
  • Aldridge D., Ansell T. (2001). Foamed concrete: production and equipment design, properties, applications and potential. Proceedings of one day seminar on foamed concrete: properties, applications and latest technological developments.
  • Narayanan K., Ramamurthy K. (2000). Structure and properties of aerated concrete: A review, Cement and Concrete Composites, Volume 22, Issue 5 ss. 321–329.
  • Yeşilata B., Işıker Y., Turgut P. (2009). Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Construction and Building Materials 23 ss. 1878–1882.
  • Alavez-Ramirez R., Chiñas-Castillo F., Morales- Dominguez V.J., Ortiz-Guzman M. (2012). Thermal conductivity of coconut fibre filled ferrocement sandwich panels. Construction and Building Materials, Volume 37 ss. 425–431.
  • Friess W.A., Rakhshan K., Hendawi T.A., Tajerzadeh S. (2012). Wall insulation measures for residential villas in Dubai: A case study in energy efficiency. Energy and Buildings Vol. 44 ss. 26–32.
  • Melo M.O. B. C., Bueno da Silva L., Coutinho A. S., Sousa V., Perazzo N. (2012). Energy efficiency in building installations using thermal insulating materials in northeast Brazil. Energy and Buildings Vol. 47 ss. 35–43.
  • Ramírez F.M.D., Muñoz F.B. , López E., Agustín Valcarce Polanco A.V. (2013). Thermal evaluation of biodigesters. Energy and Buildings Volume 58 ss. 310–318. for construction of
  • Catálogo de Elementos Constructivos del CTE, Redacción: Instituto Eduardo Torroja de ciencias de la construcción con la colaboración de CEPCO y AICIA, 2008.
  • http://www.codigotecnico.org/web/galerias/archivos
  • /CAT-EC-v05.0_MAYO08.pdf
  • Tanyıldızı H, Coşkun A. (2008). The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash. Construct Build Mater 22 ss. 2269–75.
  • Demirdağ S, Gündüz L. (2008). Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units. Construct Build Mater 22 ss. 135–42.
  • Giannakou A., Jones M.R. (2002). Potentials of to foamed performance of low rise dwellings (R.K. Dhir, P.C. Hewelett, L.J. Csetenyi Eds.) Innovations and development in concrete materials and construction. Birleşik Krallık: Thomas Telford ss. 533–544.
  • Jones M.R., McCarthy A. (2006). Heat of hydration in foamed concrete: effect of mix constituents and plastic density. Cem Concr Res, 36 (6) ss. 1032– 1041.
  • Proshin A., Beregovoi V.A., Beregovoi A.M., Eremkin I. A. (2005). Unautoclaved foam concrete and its constructions, adapted to the regional conditions construction(R.K. McCarthy Eds.). Londra: Thomas Telford, ss. 113– 120. foamed concrete Newlands, A.
  • Kumaran M. K. (2006). A Thermal and Moisture Property Database for Common Building and Insulation Volume 112, Part 2. Transactions
  • Rilem Technical Committees (1993). Recommended practice: Autoclaved aerated concrete – Properties, testing and design. Londra ve New York: E&FN SPON.
  • Demirboğa R., Gül R. (2003). The effect of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res., 33 ss. 723–727.
  • Gandage A.S., Rao V.R.V., Sivakumar M. V. N., . Vasan A., Venu M., Yaswanth A.B. ( 2013 ) Effect of Perlite on Thermal Conductivity of Self Compacting Concrete, Procedia - Social and Behavioral Sciences 104, , ss. 188 – 197.
  • Kodur V.K.R., Sultan M.A. (2003). Effect of temperature on thermal properties of high strength concrete. Journal of Materials in Civil Engineering, 15, 2 ss. 101-107.
  • Lie T.T., Editor (1993). Structural Fire Protection: Manual of Practice. ASCE Manual and Reports on Engineering Practice, No. 78 ss. 241.
  • Demirboğa R.(2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment Volume 42, Issue 7 ss. 2467–2471.
  • Wang K.S., Tseng, C.J., Chiou I.J., Shih M.H.(2005). The thermal conductivity mechanism of sewage sludge ash lightweight materials. Cement and Concrete Research Volume 35, Issue 4 ss. 803– 809.
  • Taylor, W.H. (1969). Concrete technology and practice. Londra: Angus and Robertson.
  • Weigler H., Karl S. (1980). Structural lightweight aggregate concrete with reduced density – lightweight aggregate foamed concrete International Journal of Lightweight Concr, 2 ss. 101–104.
  • Ling T.C., Poon C.S.(2013). Use of phase change materials for thermal energy storage in concrete: An overview. Construction and Building Materials Volume 46 ss. 55–62.
  • Regin A.F., Solanki S.C., Saini J.S. (2008). Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sust Energy Rev, 12 ss. 2438–2458.
  • Mondal S. (2008). Phase Change Materials for smart textiles – An overview. Applied Thermal Engineering Volume 28, Issues 11–12 ss. 1536– 1550.
  • Zalba B., Marı́n J.M., Cabeza L.F., Mehling H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering Volume 23, Issue 3 ss. 251–283.
  • Eddhahak-Ouni A., Drissi S., Colin J., Neji J., Care S. (2014). Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs). Applied Thermal Engineering Volume 64, Issues 1–2 s. 32–39.
  • Shi J., Chen Z., Shao S., Zheng J. (2014) Experimental and numerical study on effective thermal conductivity of novel form-stable basalt fiber composite concrete with PCMs for thermal storage. Applied Thermal Engineering Volume 66, Issues 1–2, ss. 156–161.
  • Shi X, Memon S.A., Tang W., Cui H., Xing F. (2014). Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energy and Buildings Volume 71 ss. 80–87.
  • Luisa F. Cabeza, Cecilia Castellon, Miquel Nogués, Marc Medrano, Ron Leppers, Oihana Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings, Energy and Buildings 39 (2007) 113–119.
  • Edwin Rodriguez-Ubinas , Letzai Ruiz-Valero,, Sergio Vega,, Javier Neila, Applications of Phase Change Material in highly energy-efficient houses, Energy and Buildings Volume 50, July 2012, Pages 49–62.
  • D. Zhou, C.Y. Zhao Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied Energy Volume 92, April 2012, Pages 593–605.
  • T. Graham, J. Chem. Soc. 12, 318 (1864).
  • Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64.
  • Ruben Baetens, Bjİrn Petter Jelle, Arild Gustavsen, Aerogel insulation for building applications: A state- of-the-art review, Energy and Buildings 43 (2011) 761–769.
  • Aegerter M.A., Leventis N., Koebel M.M. (eds), Aerogels Handbook, Series: Sol-Gel Derived Materials (1st Ed.), Springer, New York, (2011).
  • Tao Gao, Bjİrn Petter Jelle, Arild Gustavsen, Stefan
  • Aerogel-incorporated Jacobsen,
  • experimental study, Construction and Building
  • Materials, Volume 52, 15 February 2014, Pages 130–136. concrete: An
  • Kim S., Seo J., Cha J., Kim S., Chemical Retreating for gel-typed Aerogel and Insulation Performance of Cement Containing Aerogel, Construction and Building Materials 40 (2013). Pp: 501–505.
  • Siddique R., Naik T.R. (2004). Properties of concrete containing scrap-tire rubber – an overview. Waste Management 24 ss. 563–569. [55] Rubber
  • Manufacturer_s Association, (2000), Washington, DC.
  • Online: http://www.rma.org/publications/scrap-tire- publications/ (07.07.2014)
  • Dweik H.S., Ziara M. M., Hadidoun M.S. (2008). Enhancing Insulation International Journal of Polymeric Materials, 57, ss. 635–656. and Plastic Waste. Using
  • Olmeda J., Sánchez de Rojas M.I., Frías M., Donatello S., Cheeseman C.R. (2013). Effect of petroleum (pet) coke addition on the density and thermal conductivity of cement pastes and mortars. Fuel Volume 107 ss. 138–146.

BETON YAPI BİLEŞENLERİNİN ISIL YALITIM ÖZELLİKLERİ YÖNÜNDEN İNCELENMESİ: BİR DERLEME

Year 2015, Volume: 3 Issue: 3, 545 - 553, 27.10.2015

Abstract

1973’te yaşanan Petrol Krizi ile beraber doğal kaynakların kısıtlı olduğu anlaşılmış ve olabildiğince verimli kullanılması gerektiği gündeme gelmiştir. 1980’lerden itibaren ise küresel ısınmanın literatüre girmesiyle beraber “Enerji Etkinlik” günümüzde en gözde olan konulardan bir tanesi haline gelmiştir. Enerji harcamalarında binaların %32’lik gibi büyük bir paya sahip olması ise bina kabuğunun enerji etkin bir şekilde tasarlanması ihtiyacını doğurmaktadır. Bu açıdan ele alındığında en çok tüketilen yapı malzemesi olan betonun ısıl geçirgenlik değerinin düzenlenmesinin binaların enerji etkin tasarımında anahtar rol oynadığı son derece açıktır. Bu nedenle, çalışma beton yapı bileşenlerinin ısıl yalıtım yönünden incelenmesini konu edinmiştir.

References

  • British Cement Association (1999). Concrete through the Ages from 7000 BC to AD 2000. Birleşik Krallık: BCA. p. 37.
  • Neville A.M., Brooks J.J. (2010). Concrete Technology 2nd Ed., Harlow: Pearson Ed. Ltd.
  • International Code Council (2006). Concrete Manual: Conrete Quality and Field Practices 1st Ed., (Cengage Learning), ss.3.
  • Newman, J., Choo B.S. (2003). Advanced Concrete Technology – Concrete Properties, ElsevierLtd.
  • Mehta, P.K. (1986). Concrete Structure, Properties and Materials, Prentice Hall Inc. ss. 1-16.
  • Buildings Energy Databook (Online, 10.05.2014), http://buildingsdatabook.eren.doe.gov
  • American Society of Heating, Refrigerating, and Air Conditioning Handbook of Fundamentals.Atlanta, ABD. (2001).
  • ASTM Standard C 168-97 (1997). Terminology relating to thermal insulating materials, 1997.
  • Thermal Insulation Association of Canada (2013). Mechanical Insulation Best Practices Guide (Online, Access: 15.06.2014)
  • http://www.tiac.ca/downloads/best-practices
  • guide/BestPracticesGuide_E.pdf
  • Al-Homoud, M.S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment 40 ss. 353–366.
  • Al-Jabri K.S., Hago A.W., Al-Nuaimi A.S., Al- Saidy A.H. (2005). Concrete blocks for thermal insulation in hot climate. Cement and Concrete Research Vol. 35, Iss. 8, ss. 1472-1479
  • Saygılı A., Baykal G.(2011). A new method for improving the thermal insulation properties of fly ash Energy and Buildings Volume 43, Issue 11 ss. 3236–3242.
  • Aldridge D., Ansell T. (2001). Foamed concrete: production and equipment design, properties, applications and potential. Proceedings of one day seminar on foamed concrete: properties, applications and latest technological developments.
  • Narayanan K., Ramamurthy K. (2000). Structure and properties of aerated concrete: A review, Cement and Concrete Composites, Volume 22, Issue 5 ss. 321–329.
  • Yeşilata B., Işıker Y., Turgut P. (2009). Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Construction and Building Materials 23 ss. 1878–1882.
  • Alavez-Ramirez R., Chiñas-Castillo F., Morales- Dominguez V.J., Ortiz-Guzman M. (2012). Thermal conductivity of coconut fibre filled ferrocement sandwich panels. Construction and Building Materials, Volume 37 ss. 425–431.
  • Friess W.A., Rakhshan K., Hendawi T.A., Tajerzadeh S. (2012). Wall insulation measures for residential villas in Dubai: A case study in energy efficiency. Energy and Buildings Vol. 44 ss. 26–32.
  • Melo M.O. B. C., Bueno da Silva L., Coutinho A. S., Sousa V., Perazzo N. (2012). Energy efficiency in building installations using thermal insulating materials in northeast Brazil. Energy and Buildings Vol. 47 ss. 35–43.
  • Ramírez F.M.D., Muñoz F.B. , López E., Agustín Valcarce Polanco A.V. (2013). Thermal evaluation of biodigesters. Energy and Buildings Volume 58 ss. 310–318. for construction of
  • Catálogo de Elementos Constructivos del CTE, Redacción: Instituto Eduardo Torroja de ciencias de la construcción con la colaboración de CEPCO y AICIA, 2008.
  • http://www.codigotecnico.org/web/galerias/archivos
  • /CAT-EC-v05.0_MAYO08.pdf
  • Tanyıldızı H, Coşkun A. (2008). The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash. Construct Build Mater 22 ss. 2269–75.
  • Demirdağ S, Gündüz L. (2008). Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units. Construct Build Mater 22 ss. 135–42.
  • Giannakou A., Jones M.R. (2002). Potentials of to foamed performance of low rise dwellings (R.K. Dhir, P.C. Hewelett, L.J. Csetenyi Eds.) Innovations and development in concrete materials and construction. Birleşik Krallık: Thomas Telford ss. 533–544.
  • Jones M.R., McCarthy A. (2006). Heat of hydration in foamed concrete: effect of mix constituents and plastic density. Cem Concr Res, 36 (6) ss. 1032– 1041.
  • Proshin A., Beregovoi V.A., Beregovoi A.M., Eremkin I. A. (2005). Unautoclaved foam concrete and its constructions, adapted to the regional conditions construction(R.K. McCarthy Eds.). Londra: Thomas Telford, ss. 113– 120. foamed concrete Newlands, A.
  • Kumaran M. K. (2006). A Thermal and Moisture Property Database for Common Building and Insulation Volume 112, Part 2. Transactions
  • Rilem Technical Committees (1993). Recommended practice: Autoclaved aerated concrete – Properties, testing and design. Londra ve New York: E&FN SPON.
  • Demirboğa R., Gül R. (2003). The effect of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res., 33 ss. 723–727.
  • Gandage A.S., Rao V.R.V., Sivakumar M. V. N., . Vasan A., Venu M., Yaswanth A.B. ( 2013 ) Effect of Perlite on Thermal Conductivity of Self Compacting Concrete, Procedia - Social and Behavioral Sciences 104, , ss. 188 – 197.
  • Kodur V.K.R., Sultan M.A. (2003). Effect of temperature on thermal properties of high strength concrete. Journal of Materials in Civil Engineering, 15, 2 ss. 101-107.
  • Lie T.T., Editor (1993). Structural Fire Protection: Manual of Practice. ASCE Manual and Reports on Engineering Practice, No. 78 ss. 241.
  • Demirboğa R.(2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment Volume 42, Issue 7 ss. 2467–2471.
  • Wang K.S., Tseng, C.J., Chiou I.J., Shih M.H.(2005). The thermal conductivity mechanism of sewage sludge ash lightweight materials. Cement and Concrete Research Volume 35, Issue 4 ss. 803– 809.
  • Taylor, W.H. (1969). Concrete technology and practice. Londra: Angus and Robertson.
  • Weigler H., Karl S. (1980). Structural lightweight aggregate concrete with reduced density – lightweight aggregate foamed concrete International Journal of Lightweight Concr, 2 ss. 101–104.
  • Ling T.C., Poon C.S.(2013). Use of phase change materials for thermal energy storage in concrete: An overview. Construction and Building Materials Volume 46 ss. 55–62.
  • Regin A.F., Solanki S.C., Saini J.S. (2008). Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sust Energy Rev, 12 ss. 2438–2458.
  • Mondal S. (2008). Phase Change Materials for smart textiles – An overview. Applied Thermal Engineering Volume 28, Issues 11–12 ss. 1536– 1550.
  • Zalba B., Marı́n J.M., Cabeza L.F., Mehling H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering Volume 23, Issue 3 ss. 251–283.
  • Eddhahak-Ouni A., Drissi S., Colin J., Neji J., Care S. (2014). Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs). Applied Thermal Engineering Volume 64, Issues 1–2 s. 32–39.
  • Shi J., Chen Z., Shao S., Zheng J. (2014) Experimental and numerical study on effective thermal conductivity of novel form-stable basalt fiber composite concrete with PCMs for thermal storage. Applied Thermal Engineering Volume 66, Issues 1–2, ss. 156–161.
  • Shi X, Memon S.A., Tang W., Cui H., Xing F. (2014). Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energy and Buildings Volume 71 ss. 80–87.
  • Luisa F. Cabeza, Cecilia Castellon, Miquel Nogués, Marc Medrano, Ron Leppers, Oihana Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings, Energy and Buildings 39 (2007) 113–119.
  • Edwin Rodriguez-Ubinas , Letzai Ruiz-Valero,, Sergio Vega,, Javier Neila, Applications of Phase Change Material in highly energy-efficient houses, Energy and Buildings Volume 50, July 2012, Pages 49–62.
  • D. Zhou, C.Y. Zhao Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied Energy Volume 92, April 2012, Pages 593–605.
  • T. Graham, J. Chem. Soc. 12, 318 (1864).
  • Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64.
  • Ruben Baetens, Bjİrn Petter Jelle, Arild Gustavsen, Aerogel insulation for building applications: A state- of-the-art review, Energy and Buildings 43 (2011) 761–769.
  • Aegerter M.A., Leventis N., Koebel M.M. (eds), Aerogels Handbook, Series: Sol-Gel Derived Materials (1st Ed.), Springer, New York, (2011).
  • Tao Gao, Bjİrn Petter Jelle, Arild Gustavsen, Stefan
  • Aerogel-incorporated Jacobsen,
  • experimental study, Construction and Building
  • Materials, Volume 52, 15 February 2014, Pages 130–136. concrete: An
  • Kim S., Seo J., Cha J., Kim S., Chemical Retreating for gel-typed Aerogel and Insulation Performance of Cement Containing Aerogel, Construction and Building Materials 40 (2013). Pp: 501–505.
  • Siddique R., Naik T.R. (2004). Properties of concrete containing scrap-tire rubber – an overview. Waste Management 24 ss. 563–569. [55] Rubber
  • Manufacturer_s Association, (2000), Washington, DC.
  • Online: http://www.rma.org/publications/scrap-tire- publications/ (07.07.2014)
  • Dweik H.S., Ziara M. M., Hadidoun M.S. (2008). Enhancing Insulation International Journal of Polymeric Materials, 57, ss. 635–656. and Plastic Waste. Using
  • Olmeda J., Sánchez de Rojas M.I., Frías M., Donatello S., Cheeseman C.R. (2013). Effect of petroleum (pet) coke addition on the density and thermal conductivity of cement pastes and mortars. Fuel Volume 107 ss. 138–146.
There are 63 citations in total.

Details

Primary Language Turkish
Journal Section Tasarım ve Teknoloji
Authors

Kemal Köseoğlu

Onur Üzüm This is me

Özge Andiç Çakır

Publication Date October 27, 2015
Submission Date November 19, 2014
Published in Issue Year 2015 Volume: 3 Issue: 3

Cite

APA Köseoğlu, K., Üzüm, O., & Andiç Çakır, Ö. (2015). BETON YAPI BİLEŞENLERİNİN ISIL YALITIM ÖZELLİKLERİ YÖNÜNDEN İNCELENMESİ: BİR DERLEME. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 3(3), 545-553.

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526