Research Article
BibTex RIS Cite

Assessing Unconfined Vapor Cloud Explosions (Uvce) Physical Effects: A Software Built For Modelling With Bst Methodology

Year 2025, Volume: 13 Issue: 2, 512 - 525, 30.06.2025
https://doi.org/10.29109/gujsc.1077377

Abstract

The calculation of physical effects of unconfined vapour cloud explosions (UVCE), which are caused by explosive atmosphere, is important for risk assessment studies. During the evaluation of explosive atmospheres, effects of a possible explosion are determined in order to take safety measures. There are various algorithms for calculating the overpressure. In physical effect calculations, evaluation of the surrounding environment and chemical reaction are important criteria for accuracy of the results. Usually, a large portion of risk assessment studies neglect overpressure damage assessment as these algorithms cannot be understood or implemented easily due to difficulties in usage. There are various software used in calculating explosion overpressure, however these software generally are run without assessing operating limits and scenario parameters correctly. Thereby, explosion effects cannot be evaluated properly in many explosive atmosphere risk assessments. Taking this as the basis for our aim, an overpressure calculation software called ExCALc has been coded for use in UVCE risk assessment studies. ExCALc uses Baker-Strehlow-Tang (BST) model. The parameters are input in a user friendly way and the scenario results are calculated for varying distances. It is thought that for complex methodology used in assessments, simplifying tools will benefit industrial safety in the long term.

Thanks

The author would like to acknowledge Dr. Tolga BARIŞIK (from Istanbul Yeni Yuzyil University Occupational Health & Safety Department) for his contribution on determining the validation method for the code calculation results.

References

  • [1] Mannan S. Lees' Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control (4th ed.). Butterworth-Heinemann; 2012.
  • [2] DIRECTIVE 1999/92/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL On minimum requirements for improving the safety and health of workers potentially at risk from explosive atmospheres. (2000). Official Journal of the European Communities, L23, 57-64.
  • [3] Van den Bosch C, Weterings R (Eds.). Methods for the Calculation of Physical Effects CPR14E (Yellow Book) (3rd ed.). NL: Committee for the Prevention of Disasters; 2005.
  • [4] Mercx WP, Van den Berg AC, Hayhurst CJ, Robertson NJ, Moran KC. Developments in vapour cloud explosion blast modeling. Journal of Hazardous Materials 2000;71(1-3):301-319. https://doi.org/10.1016/S0304-3894(99)00085-0
  • [5] Van den Berg AC. The Multi-Energy Method - a framework for vapor cloud Explosion blast prediction. Journal of Hazardous Materials 1985;12:1-10. https://doi.org/10.1016/0304-3894(85)80022-4
  • [6] Van den Berg AC, Eggen J. GAME: Guidance for the Application of the Multi-Energy Method. 2nd International Specialist Meeting on Fuel-Air Explosions. Bergen, Norway: TNO; 1996.
  • [7] Eggen JBMM. TNO Prins Maurits Laboratory. GAME: Development of Guidance for the Application of the Multi-Energy Method. HSE Books; 1998.
  • [8] Alonso FD, Ferradás EG, Perez JF, Aznar AM, Gimeno JR, Alonso JM. Characteristic overpressure-impulse-distance curves for vapour cloud explosions using the TNO Multi-Energy Model. Journal of Hazardous Materials 2006;137(2):734-741. https://doi.org/10.1016/j.jhazmat.2006.04.005
  • [9] Tang MJ, Baker QA. Comparison of blast curves from vapor cloud explosions. Journal of Loss Prevention in the Process Industries 2000;13(3-5):433-438. https://doi.org/10.1016/S0950-4230(99)00040-6
  • [10] Baker QA, Tang MJ, Scheier EA. Vapor cloud explosion analysis. Paper presented at: AIChe 28th Loss Prevention Symposium. 1994, Atlanta, Georgia, USA.
  • [11] Baker QA, Tang MJ, Scheier EA, Silva GJ. Vapor cloud explosion analysis. Process Safety Progress 1996;15(2):106-109. https://doi.org/10.1002/prs.680150211
  • [12] Tang MJ, Baker, QA. A new set of blast curves from vapor cloud explosion. Process Safety Progress 1999;18(4):235-240. https://doi.org/10.1002/prs.680180412
  • [13] Pierorazio AJ, Thomas JK, Baker QA, Ketchum DE. An update to the Baker-Strehlow-Tang vapor cloud explosion prediction methodology flame speed table. Process Safety Progress 2005;24(1):59-65. https://doi.org/10.1002/prs.10048
  • [14] Melton TA, Marx JD. Estimating flame speeds for use with the BST blast curves. Process Safety Progress 2009;28(1):5-10. https://doi.org/10.1002/prs.10281
  • [15] Xu Y, Worthington DR, Oke A. Correcting the predictions by Baker-Strehlow-Tang (BST) Model for the ground effect. Paper presented at: Hazards XXI Symposium, November 10-12, 2009, Manchester, UK. 
  • [16] Sari A. Comparison of TNO Multienergy and Baker-Strehlow-Tang Models. Process Safety Progress 2011;30(1):23-26. https://doi.org/10.1002/prs.10424
  • [17] Turner T, Sari A. Vapor cloud explosion prediction methods - comparison of TNO Multi-Energy (ME) and Baker-Strehlow-Tang (BST) Models in terms of vulnerability of structural damage caused by an explosion. Paper presented at: Structures Congress. March 29-31, 2012, Chicago, Illinois, USA.
  • [18] Kang HS, Kim SB, Kim MH, No HC. Overpressure predictions by the MEM and the Baker-Strehlow-Tang blast curves for the SRI H2 explosion test in the open space. Paper presented at: Transactions of the Korean Nuclear Society Spring Meeting, May 27-28, 2010, Pyeongchang, Korea.
  • [19] Soman AR, Sundararaj G. Consequence assessment of vapor cloud explosion involving hydrogen release. International Journal of Emerging Technology and Advanced Engineering 2012;2(11):291-296.
  • [20] Jones R, Lehr W, Simecek-Beatty D, Reynolds RM. ALOHA (Areal Locations of Hazardous Atmospheres) 5.4.4 Technical Documentation. Technical Memorandum NOS QR&R. NOAA; 2013.
  • [21] IEC 60079-10-1: 2015-09, Explosive Atmospheres - Part 10-1: Classification of areas - Explosive Gas Atmospheres, International Electrotechnical Commission; 2015.
  • [22] Pitblado R, Alderman J, Thomas JK. Faciliating consistent siting hazard distance predictions using the TNO Multi-Energy Model. Journal of Loss Prevention in the Process Industries 2014;30:287-295. https://doi.org/10.1016/j.jlp.2014.04.010
  • [23] Alonso FD, Ferradás EG, Sánchez TD, Aznar AM, Gimeno JR, Alonso JM. Consequence analysis to determine the damage to humans from vapour cloud explosions using characteristic curves. Journal of Hazardous Materials 2008;150(1):146-152. https://doi.org/10.1016/j.jhazmat.2007.04.089
  • [24] Hellas MS, Chaib R, Verzea I. Abacus to determine the probability of death or glass breakage to the overpressure effect by two methods: TNT and TNO Multi-Energy. Scientific Bulletin UPB Series D 2020;82(1):239-254.
  • [25] Cavanagh NJ, Xu Y, Worthington DR. A software model for assessing fatality risk from explosion hazards using the Multi Energy method and Baker Strehlow Tang approach. Paper presented at: Hazards XXI Symposium. November 10-12, 2009, Manchester, UK.
  • [26] Green DW, Perry RH. Perry's Chemical Engineers' Handbook (8th ed.). McGraw-Hill Education; 2008.
  • [27] Rogers TN, Zei DA, Rowley RL, et. al. DIPPR Data Compilation of Pure Chemical Properties. Design Institute for Physical Properties. New York: AIChE; 2007.
  • [28] Wilding WV, Rowley RL, Oscarson JL. DIPPR Project 801 evaluated process design data. Fluid Phase Equilibria 1998;150:413-420. https://doi.org/10.1016/S0378-3812(98)00341-0
  • [29] Chai T, Draxler RR. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? - Arguments against avoiding RMSE in the Literature. Geoscientific Model Development 2014;7(3):1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
  • [30] Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-Squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 2021;7(e623). doi:10.7717/peerj-cs.623 https://doi.org/10.7717/peerj-cs.623
Year 2025, Volume: 13 Issue: 2, 512 - 525, 30.06.2025
https://doi.org/10.29109/gujsc.1077377

Abstract

References

  • [1] Mannan S. Lees' Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control (4th ed.). Butterworth-Heinemann; 2012.
  • [2] DIRECTIVE 1999/92/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL On minimum requirements for improving the safety and health of workers potentially at risk from explosive atmospheres. (2000). Official Journal of the European Communities, L23, 57-64.
  • [3] Van den Bosch C, Weterings R (Eds.). Methods for the Calculation of Physical Effects CPR14E (Yellow Book) (3rd ed.). NL: Committee for the Prevention of Disasters; 2005.
  • [4] Mercx WP, Van den Berg AC, Hayhurst CJ, Robertson NJ, Moran KC. Developments in vapour cloud explosion blast modeling. Journal of Hazardous Materials 2000;71(1-3):301-319. https://doi.org/10.1016/S0304-3894(99)00085-0
  • [5] Van den Berg AC. The Multi-Energy Method - a framework for vapor cloud Explosion blast prediction. Journal of Hazardous Materials 1985;12:1-10. https://doi.org/10.1016/0304-3894(85)80022-4
  • [6] Van den Berg AC, Eggen J. GAME: Guidance for the Application of the Multi-Energy Method. 2nd International Specialist Meeting on Fuel-Air Explosions. Bergen, Norway: TNO; 1996.
  • [7] Eggen JBMM. TNO Prins Maurits Laboratory. GAME: Development of Guidance for the Application of the Multi-Energy Method. HSE Books; 1998.
  • [8] Alonso FD, Ferradás EG, Perez JF, Aznar AM, Gimeno JR, Alonso JM. Characteristic overpressure-impulse-distance curves for vapour cloud explosions using the TNO Multi-Energy Model. Journal of Hazardous Materials 2006;137(2):734-741. https://doi.org/10.1016/j.jhazmat.2006.04.005
  • [9] Tang MJ, Baker QA. Comparison of blast curves from vapor cloud explosions. Journal of Loss Prevention in the Process Industries 2000;13(3-5):433-438. https://doi.org/10.1016/S0950-4230(99)00040-6
  • [10] Baker QA, Tang MJ, Scheier EA. Vapor cloud explosion analysis. Paper presented at: AIChe 28th Loss Prevention Symposium. 1994, Atlanta, Georgia, USA.
  • [11] Baker QA, Tang MJ, Scheier EA, Silva GJ. Vapor cloud explosion analysis. Process Safety Progress 1996;15(2):106-109. https://doi.org/10.1002/prs.680150211
  • [12] Tang MJ, Baker, QA. A new set of blast curves from vapor cloud explosion. Process Safety Progress 1999;18(4):235-240. https://doi.org/10.1002/prs.680180412
  • [13] Pierorazio AJ, Thomas JK, Baker QA, Ketchum DE. An update to the Baker-Strehlow-Tang vapor cloud explosion prediction methodology flame speed table. Process Safety Progress 2005;24(1):59-65. https://doi.org/10.1002/prs.10048
  • [14] Melton TA, Marx JD. Estimating flame speeds for use with the BST blast curves. Process Safety Progress 2009;28(1):5-10. https://doi.org/10.1002/prs.10281
  • [15] Xu Y, Worthington DR, Oke A. Correcting the predictions by Baker-Strehlow-Tang (BST) Model for the ground effect. Paper presented at: Hazards XXI Symposium, November 10-12, 2009, Manchester, UK. 
  • [16] Sari A. Comparison of TNO Multienergy and Baker-Strehlow-Tang Models. Process Safety Progress 2011;30(1):23-26. https://doi.org/10.1002/prs.10424
  • [17] Turner T, Sari A. Vapor cloud explosion prediction methods - comparison of TNO Multi-Energy (ME) and Baker-Strehlow-Tang (BST) Models in terms of vulnerability of structural damage caused by an explosion. Paper presented at: Structures Congress. March 29-31, 2012, Chicago, Illinois, USA.
  • [18] Kang HS, Kim SB, Kim MH, No HC. Overpressure predictions by the MEM and the Baker-Strehlow-Tang blast curves for the SRI H2 explosion test in the open space. Paper presented at: Transactions of the Korean Nuclear Society Spring Meeting, May 27-28, 2010, Pyeongchang, Korea.
  • [19] Soman AR, Sundararaj G. Consequence assessment of vapor cloud explosion involving hydrogen release. International Journal of Emerging Technology and Advanced Engineering 2012;2(11):291-296.
  • [20] Jones R, Lehr W, Simecek-Beatty D, Reynolds RM. ALOHA (Areal Locations of Hazardous Atmospheres) 5.4.4 Technical Documentation. Technical Memorandum NOS QR&R. NOAA; 2013.
  • [21] IEC 60079-10-1: 2015-09, Explosive Atmospheres - Part 10-1: Classification of areas - Explosive Gas Atmospheres, International Electrotechnical Commission; 2015.
  • [22] Pitblado R, Alderman J, Thomas JK. Faciliating consistent siting hazard distance predictions using the TNO Multi-Energy Model. Journal of Loss Prevention in the Process Industries 2014;30:287-295. https://doi.org/10.1016/j.jlp.2014.04.010
  • [23] Alonso FD, Ferradás EG, Sánchez TD, Aznar AM, Gimeno JR, Alonso JM. Consequence analysis to determine the damage to humans from vapour cloud explosions using characteristic curves. Journal of Hazardous Materials 2008;150(1):146-152. https://doi.org/10.1016/j.jhazmat.2007.04.089
  • [24] Hellas MS, Chaib R, Verzea I. Abacus to determine the probability of death or glass breakage to the overpressure effect by two methods: TNT and TNO Multi-Energy. Scientific Bulletin UPB Series D 2020;82(1):239-254.
  • [25] Cavanagh NJ, Xu Y, Worthington DR. A software model for assessing fatality risk from explosion hazards using the Multi Energy method and Baker Strehlow Tang approach. Paper presented at: Hazards XXI Symposium. November 10-12, 2009, Manchester, UK.
  • [26] Green DW, Perry RH. Perry's Chemical Engineers' Handbook (8th ed.). McGraw-Hill Education; 2008.
  • [27] Rogers TN, Zei DA, Rowley RL, et. al. DIPPR Data Compilation of Pure Chemical Properties. Design Institute for Physical Properties. New York: AIChE; 2007.
  • [28] Wilding WV, Rowley RL, Oscarson JL. DIPPR Project 801 evaluated process design data. Fluid Phase Equilibria 1998;150:413-420. https://doi.org/10.1016/S0378-3812(98)00341-0
  • [29] Chai T, Draxler RR. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? - Arguments against avoiding RMSE in the Literature. Geoscientific Model Development 2014;7(3):1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
  • [30] Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-Squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 2021;7(e623). doi:10.7717/peerj-cs.623 https://doi.org/10.7717/peerj-cs.623
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Tahsin Aykan Kepekli 0000-0002-1499-4232

Early Pub Date May 26, 2025
Publication Date June 30, 2025
Submission Date February 22, 2022
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Kepekli, T. A. (2025). Assessing Unconfined Vapor Cloud Explosions (Uvce) Physical Effects: A Software Built For Modelling With Bst Methodology. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(2), 512-525. https://doi.org/10.29109/gujsc.1077377

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526