Research Article
BibTex RIS Cite

Güç Faktörü Düzeltmeli Yükselten Dönüştürücü Tabanlı Elektrikli Araç Şarj Ünitesi Tasarımı ve Model Öngörülü Yöntem ile Kontrolü

Year 2024, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1528750

Abstract

Bu makalede, şebekeden beslenen Güç Faktörü Düzeltmeli (GFD) yükselten dönüştürücü tabanlı elektrikli araç şarj cihazları için Model Öngörülü Kontrol (MÖK) tabanlı bir kontrol yöntemi önerilmiştir. GFD yükselten dönüştürücü kullanmanın arkasındaki temel fikir, elektrikli araçlarda yerleşik bulunan bir şarj cihazı kullanma zorunluluğunu ortadan kaldırmaktır. Güç dönüştürücü, 10kW anma gücüne sahip bir konut tipi şarj cihazı olarak kullanıma uygundur. GFD yükselten dönüştürücünün kontrolü MÖK ile sağlanmıştır. Önerilen kontrol stratejisinin performansı, MATLAB/Simulink platformunda gerçekleştirilen simülasyon çalışmaları ile incelenmiştir. Sonuçlar, önerilen yöntemin kararlı durum ve referans güç değeri ve şebeke gerilimindeki adım değişimi gibi dinamik geçişler sırasında akım kontrolü yapabildiğini göstermektedir. Ayrıca, önerilen sistemin çeşitli gerilim seviyelerine sahip bataryaları şarj edebileceği doğrulanmıştır. Bununla birlikte, sonuçlar güç faktörü düzeltmesinin %3,46 toplam harmonik bozulma ile sağlandığını göstermektedir.

References

  • [1] Koç, M., Tör, O. B., & Demirbaş, Ş., Analysis the Effects of Electric Vehicles on Distribution Networks with Simulations Based on Probabilistic Methods. Gazi University Journal of Science Part C: Design and Technology, 9(1), 95-107 (2021).
  • [2] Boyar, A., Kabalcı, Y., & Kabalcı, E., Grey Wolf Optimization Algorithm-Based Hybrid Energy Storage System Controller Design for Electric Vehicles. Gazi University Journal of Science Part C: Design and Technology1-1. https://doi.org/10.29109/gujsc.1475819 (2024).
  • [3] Yahaya, A. A., Edpuganti, A., Khadkikar, V., & Zeineldin, H., A Novel Simultaneous AC and DC Charging Scheme for Electric Vehicles. IEEE Transactions on Energy Conversion (2024).
  • [4] Kerem, A., & Gürbak, H., ELEKTRİKLİ ARAÇLAR İÇİN HIZLI ŞARJ İSTASYONU TEKNOLOJİLERİ. Gazi University Journal of Science Part C: Design and Technology, 8(3), 644-661 (2020).
  • [5] Blinov, A., Chub, A., Guler, N., Bayhan, S., Parsa, L., & Vinnikov, D., Modular MV Naturally Balanced Converter with High-Frequency Isolation and no DC-Link Capacitor for EV Fast Charging. IEEE Transactions on Transportation Electrification (2024).
  • [6] Komurcugil, H., Guler, N., Bayhan, S., & Gulbudak, O., Hysteresis Current Control of Buck-Boost Non-Isolated Onboard Charger for Electric Vehicles. In IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE (2023).
  • [7] Yasa, Y., A system efficiency improvement of DC fast-chargers in electric vehicle applications: Bypassing second-stage full-bridge DC-DC converter in high-voltage charging levels. Ain Shams Engineering Journal, 14(9), 102391 (2023).
  • [8] Safayatullah, M., Elrais, M. T., Ghosh, S., Rezaii, R., & Batarseh, I., A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications. IEEE Access, 10, 40753-40793 (2022).
  • [9] Guler, N., Bayhan, S., Fesli, U., Blinov, A., & Vinnikov, D., Super-twisting Sliding Mode Control Strategy for Input Series Output Parallel Converters. IEEE Access (2023).
  • [10] Safayatullah, M., Rezaii, R., Ghosh, S., & Batarseh, I., Control of Electric Vehicle Fast Charger based on Vienna Rectifier and Dual Active Bridge DC-DC Converter. In 2022 IEEE International Conference on Industrial Technology (ICIT) (pp. 1-6). IEEE (2022)
  • [11] Pradhan, R., Shah, S. B., Hassan, M. I., Wang, Z., & Emadi, A., A 15 kW Wide-Input Reconfigurable Three-Level DAB Converter for On-Board Charging of 1.25 kV Electric Vehicle Powertrains. IEEE Transactions on Transportation Electrification (2024).
  • [12] SAE International, “SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler,” 2011 [Online]. Available: https://www.sae.org/standards/content/j1772_201210/
  • [13] ARAI, “Electric Vehicle Conductive AC Charging System,” 2017
  • [14] Ali, T. F., Dominic, D. A., Prabhakaran, P., & Parameswaran, A. P., A Bidirectional Interleaved Totem Pole PFC-based Integrated On-board Charger for EV SRM Drive. IEEE Access (2024).
  • [15] Kumar, G., & Singh, B., A Single-Stage Bridgeless PFC Charger with Enhanced Power Quality for LEV Mounted Solar PV Panel. IEEE Transactions on Transportation Electrification (2024).
  • [16] Karneddi, H., Ronanki, D., & Rodriguez, J., Universal Integrated Onboard Charger with Model Predictive Current Control for Plug-in EV Charging. IEEE Transactions on Power Electronics (2024).
  • [17] Kumar, G. N., Verma, A. K., & Mathuria, K., A novel buck-boost derived pfc converter for ev charging. In IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE (2022).
  • [18] Podamekala, V. K., & Sandeep, V., An Isolation Circuit based Charging and Discharging Model of On-Board Charger in Electric Vehicle. In 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT) (pp. 1-6). IEEE (2022)
  • [19] Güler, N., 9-Seviyeli Paket E-Hücreli Eviriciler için Üstün Burulma Algoritması Tabanlı Kayan Kipli Kontrol Tasarımı. Gazi University Journal of Science Part C: Design and Technology, 9(1), 57-70 (2021).
  • [20] Guler, N., Biricik, S., Bayhan, S., & Komurcugil, H., Model predictive control of DC–DC SEPIC converters with autotuning weighting factor. IEEE Transactions on Industrial Electronics, 68(10), 9433-9443 (2020).
  • [21] Guler, N., & Komurcugil, H., Energy function based finite control set predictive control strategy for single-phase split source inverters. IEEE Transactions on Industrial Electronics, 69(6), 5669-5679 (2021).
  • [22] Campos-Salazar, J. M., Viani-Abad, A., Sandoval-García, R., Modeling and Simulation of a Single-Phase Linear Multi-Winding Transformer in the D-Q Frame. J. Electron. Electric. Eng., 3, 224–253 (2024).
  • [23] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std 519-2014 (Revision of IEEE Std 519-1992), (2014).
  • [24] Honadia, P. A. A., Barro, F. I., Sane, M., Performance Analysis of a Boost Converter with Components Losses. Energy and Power Engineering, 10, 399-413 (2018).
  • [25] Zinchenko, D., Blinov, A., Chub, A., Vinnikov, D., Verbytskyi, I., Bayhan, S. High-Efficiency Single-Stage On-Board Charger for Electrical Vehicles. IEEE Transactions on Vehicular Technology, 70(12), 12581-12592, (2021).
  • [26] A. V. J. S. Praneeth and S. S. Williamson, Modeling, Design, Analysis, and Control of a Nonisolated Universal On-Board Battery Charger for Electric Transportation, IEEE Transactions on Transportation Electrification, 5(4), 912-924, (2019).
  • [27] Chen, Y., Zhou, J., Dai, W. P., & Hu, E., Application of Improved Bridgeless Power Factor Correction Based on One-cycle Control in Electric Vehicle Charging System. Electric Power Components and Systems, 42(2), 112–123, (2014).

Power Factor Correction Boost Converter-Based Electric Vehicle Charger Design and Control with Model Predictive Method

Year 2024, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1528750

Abstract

In this paper, a Model-Predictive Control (MPC) based control method is proposed for grid-fed Power Factor Correction (PFC) boost converter-based electric vehicle (EV) chargers. The main idea behind using a PFC boost converter is to eliminate the necessity of using an onboard charger in EVs. The power converter is suitable for use as a residential charger with 10kW rated power. The control of the PFC boost converter is achieved by MPC. The performance of the proposed control strategy is investigated by simulation studies performed on the MATLAB/Simulink platform. The results show that the proposed method is capable of current control during steady-state and dynamic transitions, such as step change in reference power and grid voltage. Also, it is verified that the proposed system can charge batteries that have various voltage levels. In addition, the results show that the power factor correction is provided with %3.46 total harmonic distortion.

References

  • [1] Koç, M., Tör, O. B., & Demirbaş, Ş., Analysis the Effects of Electric Vehicles on Distribution Networks with Simulations Based on Probabilistic Methods. Gazi University Journal of Science Part C: Design and Technology, 9(1), 95-107 (2021).
  • [2] Boyar, A., Kabalcı, Y., & Kabalcı, E., Grey Wolf Optimization Algorithm-Based Hybrid Energy Storage System Controller Design for Electric Vehicles. Gazi University Journal of Science Part C: Design and Technology1-1. https://doi.org/10.29109/gujsc.1475819 (2024).
  • [3] Yahaya, A. A., Edpuganti, A., Khadkikar, V., & Zeineldin, H., A Novel Simultaneous AC and DC Charging Scheme for Electric Vehicles. IEEE Transactions on Energy Conversion (2024).
  • [4] Kerem, A., & Gürbak, H., ELEKTRİKLİ ARAÇLAR İÇİN HIZLI ŞARJ İSTASYONU TEKNOLOJİLERİ. Gazi University Journal of Science Part C: Design and Technology, 8(3), 644-661 (2020).
  • [5] Blinov, A., Chub, A., Guler, N., Bayhan, S., Parsa, L., & Vinnikov, D., Modular MV Naturally Balanced Converter with High-Frequency Isolation and no DC-Link Capacitor for EV Fast Charging. IEEE Transactions on Transportation Electrification (2024).
  • [6] Komurcugil, H., Guler, N., Bayhan, S., & Gulbudak, O., Hysteresis Current Control of Buck-Boost Non-Isolated Onboard Charger for Electric Vehicles. In IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE (2023).
  • [7] Yasa, Y., A system efficiency improvement of DC fast-chargers in electric vehicle applications: Bypassing second-stage full-bridge DC-DC converter in high-voltage charging levels. Ain Shams Engineering Journal, 14(9), 102391 (2023).
  • [8] Safayatullah, M., Elrais, M. T., Ghosh, S., Rezaii, R., & Batarseh, I., A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications. IEEE Access, 10, 40753-40793 (2022).
  • [9] Guler, N., Bayhan, S., Fesli, U., Blinov, A., & Vinnikov, D., Super-twisting Sliding Mode Control Strategy for Input Series Output Parallel Converters. IEEE Access (2023).
  • [10] Safayatullah, M., Rezaii, R., Ghosh, S., & Batarseh, I., Control of Electric Vehicle Fast Charger based on Vienna Rectifier and Dual Active Bridge DC-DC Converter. In 2022 IEEE International Conference on Industrial Technology (ICIT) (pp. 1-6). IEEE (2022)
  • [11] Pradhan, R., Shah, S. B., Hassan, M. I., Wang, Z., & Emadi, A., A 15 kW Wide-Input Reconfigurable Three-Level DAB Converter for On-Board Charging of 1.25 kV Electric Vehicle Powertrains. IEEE Transactions on Transportation Electrification (2024).
  • [12] SAE International, “SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler,” 2011 [Online]. Available: https://www.sae.org/standards/content/j1772_201210/
  • [13] ARAI, “Electric Vehicle Conductive AC Charging System,” 2017
  • [14] Ali, T. F., Dominic, D. A., Prabhakaran, P., & Parameswaran, A. P., A Bidirectional Interleaved Totem Pole PFC-based Integrated On-board Charger for EV SRM Drive. IEEE Access (2024).
  • [15] Kumar, G., & Singh, B., A Single-Stage Bridgeless PFC Charger with Enhanced Power Quality for LEV Mounted Solar PV Panel. IEEE Transactions on Transportation Electrification (2024).
  • [16] Karneddi, H., Ronanki, D., & Rodriguez, J., Universal Integrated Onboard Charger with Model Predictive Current Control for Plug-in EV Charging. IEEE Transactions on Power Electronics (2024).
  • [17] Kumar, G. N., Verma, A. K., & Mathuria, K., A novel buck-boost derived pfc converter for ev charging. In IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE (2022).
  • [18] Podamekala, V. K., & Sandeep, V., An Isolation Circuit based Charging and Discharging Model of On-Board Charger in Electric Vehicle. In 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT) (pp. 1-6). IEEE (2022)
  • [19] Güler, N., 9-Seviyeli Paket E-Hücreli Eviriciler için Üstün Burulma Algoritması Tabanlı Kayan Kipli Kontrol Tasarımı. Gazi University Journal of Science Part C: Design and Technology, 9(1), 57-70 (2021).
  • [20] Guler, N., Biricik, S., Bayhan, S., & Komurcugil, H., Model predictive control of DC–DC SEPIC converters with autotuning weighting factor. IEEE Transactions on Industrial Electronics, 68(10), 9433-9443 (2020).
  • [21] Guler, N., & Komurcugil, H., Energy function based finite control set predictive control strategy for single-phase split source inverters. IEEE Transactions on Industrial Electronics, 69(6), 5669-5679 (2021).
  • [22] Campos-Salazar, J. M., Viani-Abad, A., Sandoval-García, R., Modeling and Simulation of a Single-Phase Linear Multi-Winding Transformer in the D-Q Frame. J. Electron. Electric. Eng., 3, 224–253 (2024).
  • [23] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std 519-2014 (Revision of IEEE Std 519-1992), (2014).
  • [24] Honadia, P. A. A., Barro, F. I., Sane, M., Performance Analysis of a Boost Converter with Components Losses. Energy and Power Engineering, 10, 399-413 (2018).
  • [25] Zinchenko, D., Blinov, A., Chub, A., Vinnikov, D., Verbytskyi, I., Bayhan, S. High-Efficiency Single-Stage On-Board Charger for Electrical Vehicles. IEEE Transactions on Vehicular Technology, 70(12), 12581-12592, (2021).
  • [26] A. V. J. S. Praneeth and S. S. Williamson, Modeling, Design, Analysis, and Control of a Nonisolated Universal On-Board Battery Charger for Electric Transportation, IEEE Transactions on Transportation Electrification, 5(4), 912-924, (2019).
  • [27] Chen, Y., Zhou, J., Dai, W. P., & Hu, E., Application of Improved Bridgeless Power Factor Correction Based on One-cycle Control in Electric Vehicle Charging System. Electric Power Components and Systems, 42(2), 112–123, (2014).
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Power Electronics
Journal Section Tasarım ve Teknoloji
Authors

Naki Güler 0000-0003-4145-4247

Uğur Fesli 0000-0003-3348-9140

Samet Biricik 0000-0002-1559-2024

Early Pub Date November 21, 2024
Publication Date
Submission Date August 5, 2024
Acceptance Date October 23, 2024
Published in Issue Year 2024 Erken Görünüm

Cite

APA Güler, N., Fesli, U., & Biricik, S. (2024). Güç Faktörü Düzeltmeli Yükselten Dönüştürücü Tabanlı Elektrikli Araç Şarj Ünitesi Tasarımı ve Model Öngörülü Yöntem ile Kontrolü. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji1-1. https://doi.org/10.29109/gujsc.1528750

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526