Research Article
BibTex RIS Cite

CNC Torna Tezgâhlarında St37-2 / S235JR, 11SMnPb37 ve C45 (1.0503) Çeliklerine NPT Konik Diş Açma İşlemlerinin İncelenmesi Ve Optimizasyonu

Year 2024, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1592300

Abstract

Bu çalışmada, farklı sertliğe sahip malzemeler (St37-2/S235JR, 11SMnPb37 ve C45(1.0503)) üzerine NPT konik diş açma işlemi uygulanmış ve işleme parametrelerinin esas kesme kuvveti (Fc) ve eğim (α) üzerine etkileri deneysel olarak araştırılmıştır. Deneylerde dört farklı kesme hızı (50, 60, 70 ve 80 m/dak), 1,411 mm/dev adım ve PVD yöntemi ile kaplanmış iki farklı kaplamalı kesici takım (ALCrN+ ALCrSİN, TİALN) kullanılmıştır. Kesme derinliği ise tüm deneylerde sabit 1,015 mm alınmıştır. Deney sonuçları üzerinde etkin parametrelerin belirlenmesi için varyans analizi (ANOVA) yapılarak, yanıt yüzeyi metodolojisi (RSM) yöntemiyle optimum işleme parametreleri tespit edilmiştir. ANOVA sonuçlarına göre Fc ve α değerleri üzerinde en büyük etkiye malzeme sertliğinin sahip olduğu tespit edilmiştir. Optimum değerlerin 11SMnPb37 malzemenin TİALN PVD kaplamalı takım kullanılarak 63,6364 m/dak kesme hızında işlendiğinde elde edileceği sonucuna ulaşılmıştır.

References

  • [1] Show, M. C. (2005). Metal Cutting Principles. New York: Oxford University Press. Tutunea, D. F., & Marginean, G. (2013). CNC Machining Technology. Volume III: Procedures. Sibiu: "Lucian Blaga" University.
  • [2] Jin, X., & Zhang, D. (2009). Multi-objective optimization of turning process in view of machining efficiency and carbon emission. Journal of Cleaner Production, 17(16), 1478-1487.
  • [3] Lin, S. C., & Chen, I. K. (2012). The CNC system with thread cutting function. The International Journal of Advanced Manufacturing Technology, 62(5-8), 771-778.
  • [4] Nasr, M. N. A., & Kamrani, A. K. (2006). A new methodology for extracting manufacturing features from CAD system. Computers & Industrial Engineering, 51(3), 389-415.
  • [5] Brecher, C., Esser, M., & Witt, S. (2015). Interaction of manufacturing process and machine tool. CIRP Annals, 64(2), 588-609. Bolt, P. (2015). CNC Control Setup for Milling and Turning. New York: Industrial Press.
  • [6] Das, A., Patel, S. K., Hotta, T. K., & Biswal, B. B. (2019). Statistical analysis of different machining characteristics of EN-24 alloy steel during dry hard turning with multilayer coated cermet inserts. Measurement, 134, 123–141.
  • [7] Duzen, H., & Acar, E. (2016). Effects of cutting parameters on vibration and sound pressure level in turning of AISI 304 austenitic stainless steels. The International Journal of Advanced Manufacturing Technology, 82(5-8), 1185-1196.
  • [8] Tsai, M. Y., & Wang, P. J. (2007). Optimization of multi-pass turning with genetic algorithm and Taguchi's technique. Journal of Materials Processing Technology, 209(2), 661-667.
  • [9] Li, H., Liu, Y., & Zhang, D. (2008). Tool life and surface roughness in machining 20CrMnTi alloy with coated carbide tool under different cooling/lubrication conditions. International Journal of Refractory Metal sand Hard Materials, 26(3), 189-198.
  • [10] Jin, X., & Zhang, Y. (2009). Research on cutting parameters for finish turning based on the taguchi method. Journal of Materials Processing Technology, 209(8), 3809-3814.
  • [11] Liao, Y. S., & Chen, Y. C. (2010). A study on the high-speed finish turning of AISI 4340 hardened alloy steel by Al2O3/TiC mixed ceramic tool. Journal of Materials Processing Technology, 210(15), 2245-2251.
  • [12] Mohsen Soori, Mohammed Asmael. (2022). A Review of the Recent Development in Machining Parameter Optimization. Jordan Journal of Mechanical and Industrial Engineering, 16 (2), 205-223.
  • [13] Makadia, A.J.; Nanavati, J. (2013). Optimization of machining parameters for turning operations based on response surface methodology. Measurement, 46(4), 1521-1529.
  • [14] Neşeli, S.; Yaldız, S.; Türkeş, E. (2011). Optimization of tool geometry parameters for turning operations based on the response surface methodology. Measurement, 44(3), 580-587.
  • [15] Gupta, M.K.; Sood, P.; Sharma, V.S. (2016). Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. Journal of Cleaner Production, 135, 1276-1288.
  • [16] Temak (2022). Kraft 2022 Ürün Kataloğu. https://temak.com.tr/wp-content/uploads/2022/11/Kraft-2022-U%CC%88ru%CC%88n-Katalog%CC%86u.pdf
  • [17] Singal R.K., Singal M., Singal R. (2009). "Fundamentals of Machining and Machine Tools" , Wiley.
  • [18] Çakır M.C., “Modern Talaşlı İmalatın Esasları”, Uludağ Üniversitesi Güçlendirme Vakfı, Yayın No: 140 VİPAŞ Yayın No: 16 Bursa (1999).
  • [19] Raymond HM, Douglas CM, Christine MAC (2009). Response Surface Methodology (3rd Edition). Canada: A John Wiley & Sons, Inc., Publication, 1-11.
  • [20] Kathleen MC, Natalia YK, Jeff R (2004). Response Surface Methodology. CASOS Technical Report, 31.
  • [21] Ayhan, E., Yurdakul, M., Çoğun, C., & İç, Y. T. (2023). The entropy method integrated RSM model to evaluate hole geometries in electrochemical blind hole drilling. Australian Journal of Mechanical Engineering, 1–19.
  • [22] Amel Chabbi, Mohamed Athmane Yallese, Ikhlas Meddour, Mourad Nouioua, Tarek Mabrouki, François Girardin (2017). Predictive modeling and multi-response optimization of technological parameters in turning of Polyoxymethylene polymer (POM C) using RSM and desirability function. Measurement, 95, 99-115.

Investigation and Optimization of NPT Taper Threading Operations on St37-2 / S235JR, 11SMnPb37 and C45 (1.0503) Steels on CNC Lathes

Year 2024, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1592300

Abstract

In this study, NPT taper threading was performed on materials with different hardness (St37-2/S235JR, 11SMnPb37 and C45(1.0503)) and the effects of machining parameters on the main cutting force (Fc) and rake (α) were experimentally investigated. Four different cutting speeds (50, 60, 70 and 80 m/min), 1.411 mm/rev pitch and two different coated cutting tools (ALCrN+ ALCrSIN, TİALN) coated by PVD method were used in the experiments. The depth of cut was taken as constant 1.015 mm in all experiments. Analysis of variance (ANOVA) was performed to determine the effective parameters on the experimental results and the optimum machining parameters were determined by response surface methodology (RSM). According to the ANOVA results, it was found that the material hardness had the greatest effect on Fc and α values. It was concluded that the optimum values will be obtained when 11SMnPb37 material is machined at a cutting speed of 63.6364 m/min using TİALN PVD coated tool.

References

  • [1] Show, M. C. (2005). Metal Cutting Principles. New York: Oxford University Press. Tutunea, D. F., & Marginean, G. (2013). CNC Machining Technology. Volume III: Procedures. Sibiu: "Lucian Blaga" University.
  • [2] Jin, X., & Zhang, D. (2009). Multi-objective optimization of turning process in view of machining efficiency and carbon emission. Journal of Cleaner Production, 17(16), 1478-1487.
  • [3] Lin, S. C., & Chen, I. K. (2012). The CNC system with thread cutting function. The International Journal of Advanced Manufacturing Technology, 62(5-8), 771-778.
  • [4] Nasr, M. N. A., & Kamrani, A. K. (2006). A new methodology for extracting manufacturing features from CAD system. Computers & Industrial Engineering, 51(3), 389-415.
  • [5] Brecher, C., Esser, M., & Witt, S. (2015). Interaction of manufacturing process and machine tool. CIRP Annals, 64(2), 588-609. Bolt, P. (2015). CNC Control Setup for Milling and Turning. New York: Industrial Press.
  • [6] Das, A., Patel, S. K., Hotta, T. K., & Biswal, B. B. (2019). Statistical analysis of different machining characteristics of EN-24 alloy steel during dry hard turning with multilayer coated cermet inserts. Measurement, 134, 123–141.
  • [7] Duzen, H., & Acar, E. (2016). Effects of cutting parameters on vibration and sound pressure level in turning of AISI 304 austenitic stainless steels. The International Journal of Advanced Manufacturing Technology, 82(5-8), 1185-1196.
  • [8] Tsai, M. Y., & Wang, P. J. (2007). Optimization of multi-pass turning with genetic algorithm and Taguchi's technique. Journal of Materials Processing Technology, 209(2), 661-667.
  • [9] Li, H., Liu, Y., & Zhang, D. (2008). Tool life and surface roughness in machining 20CrMnTi alloy with coated carbide tool under different cooling/lubrication conditions. International Journal of Refractory Metal sand Hard Materials, 26(3), 189-198.
  • [10] Jin, X., & Zhang, Y. (2009). Research on cutting parameters for finish turning based on the taguchi method. Journal of Materials Processing Technology, 209(8), 3809-3814.
  • [11] Liao, Y. S., & Chen, Y. C. (2010). A study on the high-speed finish turning of AISI 4340 hardened alloy steel by Al2O3/TiC mixed ceramic tool. Journal of Materials Processing Technology, 210(15), 2245-2251.
  • [12] Mohsen Soori, Mohammed Asmael. (2022). A Review of the Recent Development in Machining Parameter Optimization. Jordan Journal of Mechanical and Industrial Engineering, 16 (2), 205-223.
  • [13] Makadia, A.J.; Nanavati, J. (2013). Optimization of machining parameters for turning operations based on response surface methodology. Measurement, 46(4), 1521-1529.
  • [14] Neşeli, S.; Yaldız, S.; Türkeş, E. (2011). Optimization of tool geometry parameters for turning operations based on the response surface methodology. Measurement, 44(3), 580-587.
  • [15] Gupta, M.K.; Sood, P.; Sharma, V.S. (2016). Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. Journal of Cleaner Production, 135, 1276-1288.
  • [16] Temak (2022). Kraft 2022 Ürün Kataloğu. https://temak.com.tr/wp-content/uploads/2022/11/Kraft-2022-U%CC%88ru%CC%88n-Katalog%CC%86u.pdf
  • [17] Singal R.K., Singal M., Singal R. (2009). "Fundamentals of Machining and Machine Tools" , Wiley.
  • [18] Çakır M.C., “Modern Talaşlı İmalatın Esasları”, Uludağ Üniversitesi Güçlendirme Vakfı, Yayın No: 140 VİPAŞ Yayın No: 16 Bursa (1999).
  • [19] Raymond HM, Douglas CM, Christine MAC (2009). Response Surface Methodology (3rd Edition). Canada: A John Wiley & Sons, Inc., Publication, 1-11.
  • [20] Kathleen MC, Natalia YK, Jeff R (2004). Response Surface Methodology. CASOS Technical Report, 31.
  • [21] Ayhan, E., Yurdakul, M., Çoğun, C., & İç, Y. T. (2023). The entropy method integrated RSM model to evaluate hole geometries in electrochemical blind hole drilling. Australian Journal of Mechanical Engineering, 1–19.
  • [22] Amel Chabbi, Mohamed Athmane Yallese, Ikhlas Meddour, Mourad Nouioua, Tarek Mabrouki, François Girardin (2017). Predictive modeling and multi-response optimization of technological parameters in turning of Polyoxymethylene polymer (POM C) using RSM and desirability function. Measurement, 95, 99-115.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Machining
Journal Section Tasarım ve Teknoloji
Authors

Cüneyt Kurtuluş 0000-0001-6769-2070

Emre Ayhan 0000-0002-3923-0992

Ahmet Mavi 0000-0003-0339-2639

Early Pub Date December 23, 2024
Publication Date
Submission Date November 27, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2024 Erken Görünüm

Cite

APA Kurtuluş, C., Ayhan, E., & Mavi, A. (2024). CNC Torna Tezgâhlarında St37-2 / S235JR, 11SMnPb37 ve C45 (1.0503) Çeliklerine NPT Konik Diş Açma İşlemlerinin İncelenmesi Ve Optimizasyonu. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji1-1. https://doi.org/10.29109/gujsc.1592300

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526