Research Article
BibTex RIS Cite

Alümina (Al2O3) Takviyeli Petek Çekirdekli Sandviç Panellerin Yüksek Hızlı Darbe Tepkisi: Sayısal Analiz Çalışması

Year 2025, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1598098

Abstract

Balistik koruyucu tasarımında, çok sayıda faktörün yanı sıra, sağlamlık ve hafiflik iki temel ve vazgeçilmez unsur olarak öne çıkmaktadır. Özellikle savunma sanayine yönelik araçlarda, dış tehditlere karşı koruma sağlamak amacıyla geliştirilen zırh tasarımlarında bu iki faktörün önemi daha da artmaktadır. Hareketli ve dinamik yapılarda olduğu kadar, statik yapıların tasarımında da zırh özelliklerinin dikkate alınması büyük bir gerekliliktir. Farklı modellerde, kalınlıklarda ve geometrilerde üretilen bu sandviç paneller, performans ve etkinlik açısından geniş bir araştırma konusu oluşturmuş, literatürde bu konuda çok sayıda detaylı çalışma yapılmıştır. Sandviç panellerin sunduğu çözümler, yalnızca mekanik dayanıklılığı artırmakla kalmaz, aynı zamanda yapıların ağırlık yükünü minimize ederek enerji verimliliğine ve kullanım ömrüne de önemli katkılarda bulunur. Bu nedenle, zırh sistemlerinde kullanılan sandviç panellerin optimizasyonu, mühendislikte hem teorik, hem de pratik açıdan yenilikçi bir çalışma alanı olarak kabul edilmektedir. Bu makalede, 304 paslanmaz çelik yüzey tabakaları ile 304 paslanmaz çelik ve Alüminyum Alaşım (AA 3003) çekirdeklerden oluşan balpeteği sandviç panellerin yüksek hızlı penetratör çarpmasına karşı mekanik davranışları incelenmiştir. Ayrıca, farklı çekirdek malzemelerinin performansa etkisi vurgulanmıştır.

References

  • [1] X. Li, G. Li, C.H. Wang, M. You, "Minimum-weight sandwich structure optimum design subjected to torsional loading", Applied Composite Materials, 19 (2): 117–126, 2010
  • [2] A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, “The topological design of multifunctional cellular metals”, Progress in Materials Science 46, 309–327 : H.N.G., 2001
  • [3] F.W. Zok, S.A. Waltner, Z. Wei, H.J. Rathbun, R.M. McMeeking and A.G. Evans, “A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores” Int. Journal of Solid and Structures, 41 (22–23) , pp. 6249-6271, 2004
  • [4] V. Madhu, K. Ramanjaneyulu, T. Bhat, N. Gupta, “An experimental study of penetration resistance of ceramic armour subjected to projectile impact”, International Journal of Impact Engineering, 32, 337-350, 2005
  • [5] M. Vural, M. Erim, C. Bindal, S. Zeytin, A. Ucisik, “Traumatological and Ballistic Aspects of Alumina Ceramics”, Key Engineering Materials, 240-242, 623 – 628, 2002
  • [6] A.U. Haq, S.K.R. Narala, , “Dynamic response of honeycomb cored sandwich panels under high velocity impact: A numerical study”, Materials Today: Proceedings, Article in Press
  • [7] Y.Yao, J. Waters, A. Shneidman, J. Cui, X. Wang, N. Mandsberg, S. Li, A. Balazs, J. Aizenberg, “Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability”, Proceedings of the National Academy of Sciences of the United States of America, 115, 12950 – 12955, 2018
  • [8] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. Wadley, “Metal Foams: A Design Guide”, Butterworth Heinemann, London, 2000
  • [9] G. Sun, D. Chen, H. Wang, P. Hazell, Q. Li, “High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations”, International Journal of Impact Engineering, 2018
  • [10] N. Ha, G. Lu, X. Xiang, “Energy absorption of a bio-inspired honeycomb sandwich panel”, Journal of Materials Science, 54, 6286-6300, 2019
  • [11] H. Tan, Z. He, E. Li, X. Tan, A. Cheng, Q. Li, “Energy absorption characteristics of three-layered sandwich panels with graded re-entrant hierarchical honeycombs cores”, Aerospace Science and Technology, 2020
  • [12] N.A. Fleck, , V.S. Deshpande, “The resistance of clamped sandwich beams to shock loading”, Journal of Applied Mechanics 71(3), 386–401, 2004
  • [13] Livermore Software Technology Corporation (Lstc), Ls-Dyna® Keyword User's Manual Volume II Material Models, LS-DYNA R13, Michigan, 2014
  • [14] X. Wang, Z. Yue, X. Xu, Z. Zhao, H. Ji, M. Zhu, P. Wan, Q. Zhang, , T.J. Lu , "Ballistic impact response of elastomer-retrofitted corrugated core sandwich panels", International Journal of Impact Engineering, Vol. 175, 104545, 2023
  • [15] R. Scazzosi et al., “Experimental and numerical evaluation of the perforation resistance of multi-layered alumina/aramid fiber ballistic shield impacted by an armor piercing projectile”, Composites Part B: Engineering, Volume 230, 109488, ISSN 1359-8368, 2022
  • [16] H. A. Abou-Elela et al., “Numerical Investigation of Projectile Penetration into Ceramic/Steel Targets”, Conference Paper in the International Conference on Applied Mechanics and Mechanical Engineering, May 2010
  • [17] M. M. Shokrieh,, G. H. Javadpour, "Penetration analysis of a projectile in ceramic composite armour," Composite Structures, Vol. 82 No.2, pp. 269-276, 2008
  • [18] F. Zhu, G. Lu, D. Ruan, Z. Wang, "Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores", International Journal of Protective Structures, 1 (4): 507–541, 2010
  • [19] T. Bitzer, “Introduction: History”, in Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing, 1st ed. Springer-Science+Business Media, pp. 1–3, 1997
  • [20] H.J. Rathbun, Z. Wei, M.Y. He, F.W. Zok, A.G. Evans, D.J. Sypeck, H.N.G. Wadley, “Measurements and simulations of the performance of metallic sandwich structures with a near optimal tetrahedral truss core”, Journal of Applied Mechanics, 2004
  • [21] G. Imbalzano, P. Tran, T.D. Ngo, P.V.S. Lee, "Three-dimensional modelling of auxetic sandwich panels for localised impact resistance", Journal of Sandwich Structures and Materials, 19 (3): 291–316, 2017
  • [22] M. Khan, M. Iqbal, V. Bratov, N. Morozov, N. Gupta, “An investigation of the ballistic performance of independent ceramic target”, Thin-walled Structures, 154, 106784, 2020
  • [23] J. Liu, G. Wang, Z. Lei, “Comparisons on the Local Impact Response of Sandwich Panels with In-Plane and Out-Of-Plane Honeycomb Cores. Sustainability”, 2023
  • [24] A. Ferreira, B. Buitrago, C. Santiuste, S. Sanchez-Saez, E. Barbero, C. Navarro, “Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact”, Composite Structures, 92, 2090-2096, 2010
  • [25] Y. Yasui, “Dynamic axial crushing of multi-layer honeycomb panels and impact tensile behavior of the component members”, International Journal of Impact Engineering, 24, 659-671, 2000
  • [26] F. Roudbeneh, G. Liaghat, H. Sabouri, H. Hadavinia, “High-velocity impact loading in honeycomb sandwich panels reinforced with polymer foam: a numerical approach study" Iranian Polymer Journal, 29, 707-721, 2020
  • [27] M. Mahmoudabadi, M. Sadighi, “Experimental investigation on the energy absorption characteristics of honeycomb sandwich panels under quasi-static punch loading”, Aerospace Science and Technology, 2019
  • [28] L. Vargas-Gonzalez, R.F. Speyer, J. Campbell, "Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armour ceramics", International Journal of Applied Ceramic Technology, Vol. 7 No. 5, pp. 643-651, 2010
  • [29] D.L Orphal, R.R. Franzen, A.C. Charters, T.L. Menna, A.J. Piekutowski, "Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s", International Journal of Impact Engineering, Vol. 19 No.1, pp. 15-29, 1997
  • [30] R. Scazzosi, M.Giglio, A. Manes, “FE coupled to SPH numerical model for the simulation of high-velocity impact on ceramic based ballistic shields”, Ceramics International, 46, 23760-23772, 2020
  • [31] F. Grace, N. Rupert, “Analysis of long rods impacting ceramic targets at high velocity”, International Journal of Impact Engineering, 20, 281-292, 1997
  • [32] T. Belytschko, W. K. Liu, B. Moran, K. Elkhodary, “Nonlinear finite elements for continua and structures”, John wiley & sons, 2nd edition 2014

High Speed Impact Response of Alumina (Al2O3) Reinforced Honeycomb Core Sandwich Panels: Numerical Analysis Study

Year 2025, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1598098

Abstract

In addition to many other factors, robustness, and lightness are two fundamental and indispensable elements in the design of ballistic protection. The importance of these two factors increases even more in armor designs developed to protect against external threats, especially in vehicles for the defense industry. It is a great necessity to consider armor properties in the design of static structures as well as in moving and dynamic structures. These sandwich panels, which are produced in different models, thicknesses, and geometries, have been the subject of extensive research in terms of performance and effectiveness, and many detailed studies have been conducted in the literature. The solutions offered by sandwich panels not only increase mechanical durability but also make significant contributions to energy efficiency and lifetime by minimizing the weight load of structures. Therefore, the optimization of sandwich panels used in armor systems is considered an innovative field of study in engineering, both theoretically and practically. In this paper, the mechanical behavior of honeycomb sandwich panels consisting of 304 stainless steel surface layers and 304 stainless steel and Aluminum Alloy (AA 3003) cores against high-speed penetrator impact is investigated. Also, the effect of different core materials on the performance is emphasized.

References

  • [1] X. Li, G. Li, C.H. Wang, M. You, "Minimum-weight sandwich structure optimum design subjected to torsional loading", Applied Composite Materials, 19 (2): 117–126, 2010
  • [2] A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, “The topological design of multifunctional cellular metals”, Progress in Materials Science 46, 309–327 : H.N.G., 2001
  • [3] F.W. Zok, S.A. Waltner, Z. Wei, H.J. Rathbun, R.M. McMeeking and A.G. Evans, “A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores” Int. Journal of Solid and Structures, 41 (22–23) , pp. 6249-6271, 2004
  • [4] V. Madhu, K. Ramanjaneyulu, T. Bhat, N. Gupta, “An experimental study of penetration resistance of ceramic armour subjected to projectile impact”, International Journal of Impact Engineering, 32, 337-350, 2005
  • [5] M. Vural, M. Erim, C. Bindal, S. Zeytin, A. Ucisik, “Traumatological and Ballistic Aspects of Alumina Ceramics”, Key Engineering Materials, 240-242, 623 – 628, 2002
  • [6] A.U. Haq, S.K.R. Narala, , “Dynamic response of honeycomb cored sandwich panels under high velocity impact: A numerical study”, Materials Today: Proceedings, Article in Press
  • [7] Y.Yao, J. Waters, A. Shneidman, J. Cui, X. Wang, N. Mandsberg, S. Li, A. Balazs, J. Aizenberg, “Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability”, Proceedings of the National Academy of Sciences of the United States of America, 115, 12950 – 12955, 2018
  • [8] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. Wadley, “Metal Foams: A Design Guide”, Butterworth Heinemann, London, 2000
  • [9] G. Sun, D. Chen, H. Wang, P. Hazell, Q. Li, “High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations”, International Journal of Impact Engineering, 2018
  • [10] N. Ha, G. Lu, X. Xiang, “Energy absorption of a bio-inspired honeycomb sandwich panel”, Journal of Materials Science, 54, 6286-6300, 2019
  • [11] H. Tan, Z. He, E. Li, X. Tan, A. Cheng, Q. Li, “Energy absorption characteristics of three-layered sandwich panels with graded re-entrant hierarchical honeycombs cores”, Aerospace Science and Technology, 2020
  • [12] N.A. Fleck, , V.S. Deshpande, “The resistance of clamped sandwich beams to shock loading”, Journal of Applied Mechanics 71(3), 386–401, 2004
  • [13] Livermore Software Technology Corporation (Lstc), Ls-Dyna® Keyword User's Manual Volume II Material Models, LS-DYNA R13, Michigan, 2014
  • [14] X. Wang, Z. Yue, X. Xu, Z. Zhao, H. Ji, M. Zhu, P. Wan, Q. Zhang, , T.J. Lu , "Ballistic impact response of elastomer-retrofitted corrugated core sandwich panels", International Journal of Impact Engineering, Vol. 175, 104545, 2023
  • [15] R. Scazzosi et al., “Experimental and numerical evaluation of the perforation resistance of multi-layered alumina/aramid fiber ballistic shield impacted by an armor piercing projectile”, Composites Part B: Engineering, Volume 230, 109488, ISSN 1359-8368, 2022
  • [16] H. A. Abou-Elela et al., “Numerical Investigation of Projectile Penetration into Ceramic/Steel Targets”, Conference Paper in the International Conference on Applied Mechanics and Mechanical Engineering, May 2010
  • [17] M. M. Shokrieh,, G. H. Javadpour, "Penetration analysis of a projectile in ceramic composite armour," Composite Structures, Vol. 82 No.2, pp. 269-276, 2008
  • [18] F. Zhu, G. Lu, D. Ruan, Z. Wang, "Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores", International Journal of Protective Structures, 1 (4): 507–541, 2010
  • [19] T. Bitzer, “Introduction: History”, in Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing, 1st ed. Springer-Science+Business Media, pp. 1–3, 1997
  • [20] H.J. Rathbun, Z. Wei, M.Y. He, F.W. Zok, A.G. Evans, D.J. Sypeck, H.N.G. Wadley, “Measurements and simulations of the performance of metallic sandwich structures with a near optimal tetrahedral truss core”, Journal of Applied Mechanics, 2004
  • [21] G. Imbalzano, P. Tran, T.D. Ngo, P.V.S. Lee, "Three-dimensional modelling of auxetic sandwich panels for localised impact resistance", Journal of Sandwich Structures and Materials, 19 (3): 291–316, 2017
  • [22] M. Khan, M. Iqbal, V. Bratov, N. Morozov, N. Gupta, “An investigation of the ballistic performance of independent ceramic target”, Thin-walled Structures, 154, 106784, 2020
  • [23] J. Liu, G. Wang, Z. Lei, “Comparisons on the Local Impact Response of Sandwich Panels with In-Plane and Out-Of-Plane Honeycomb Cores. Sustainability”, 2023
  • [24] A. Ferreira, B. Buitrago, C. Santiuste, S. Sanchez-Saez, E. Barbero, C. Navarro, “Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact”, Composite Structures, 92, 2090-2096, 2010
  • [25] Y. Yasui, “Dynamic axial crushing of multi-layer honeycomb panels and impact tensile behavior of the component members”, International Journal of Impact Engineering, 24, 659-671, 2000
  • [26] F. Roudbeneh, G. Liaghat, H. Sabouri, H. Hadavinia, “High-velocity impact loading in honeycomb sandwich panels reinforced with polymer foam: a numerical approach study" Iranian Polymer Journal, 29, 707-721, 2020
  • [27] M. Mahmoudabadi, M. Sadighi, “Experimental investigation on the energy absorption characteristics of honeycomb sandwich panels under quasi-static punch loading”, Aerospace Science and Technology, 2019
  • [28] L. Vargas-Gonzalez, R.F. Speyer, J. Campbell, "Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armour ceramics", International Journal of Applied Ceramic Technology, Vol. 7 No. 5, pp. 643-651, 2010
  • [29] D.L Orphal, R.R. Franzen, A.C. Charters, T.L. Menna, A.J. Piekutowski, "Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s", International Journal of Impact Engineering, Vol. 19 No.1, pp. 15-29, 1997
  • [30] R. Scazzosi, M.Giglio, A. Manes, “FE coupled to SPH numerical model for the simulation of high-velocity impact on ceramic based ballistic shields”, Ceramics International, 46, 23760-23772, 2020
  • [31] F. Grace, N. Rupert, “Analysis of long rods impacting ceramic targets at high velocity”, International Journal of Impact Engineering, 20, 281-292, 1997
  • [32] T. Belytschko, W. K. Liu, B. Moran, K. Elkhodary, “Nonlinear finite elements for continua and structures”, John wiley & sons, 2nd edition 2014
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Ballistic Systems
Journal Section Tasarım ve Teknoloji
Authors

İsmail Türkdönmez 0000-0002-8376-6380

Yusuf Tansel İç 0000-0001-9274-7467

Early Pub Date February 27, 2025
Publication Date
Submission Date December 8, 2024
Acceptance Date January 6, 2025
Published in Issue Year 2025 Erken Görünüm

Cite

APA Türkdönmez, İ., & İç, Y. T. (2025). Alümina (Al2O3) Takviyeli Petek Çekirdekli Sandviç Panellerin Yüksek Hızlı Darbe Tepkisi: Sayısal Analiz Çalışması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji1-1. https://doi.org/10.29109/gujsc.1598098

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526