Research Article
BibTex RIS Cite

Basitleştirilmiş Bölünmüş Kaynaklı Evirici İçin Model Öngörülü Kontrol Yöntemi

Year 2025, Volume: 13 Issue: 2, 718 - 731, 30.06.2025
https://doi.org/10.29109/gujsc.1622225

Abstract

Bu makalede, basitleştirilmiş Bölünmüş Kaynaklı Evirici (BKE) için Model Öngörülü Kontrol (MÖK) yöntemi sunulmuştur. Basitleştirilmiş BKE, geleneksel BKE topolojilerinin giriş kısımda bulunan diyot ve anahtarlama elemanlarının çıkarılıp, H köprüsüne ilave bir anahtarın eklenmesiyle oluşmuştur. Geleneksel SSI topolojileriyle karşılaştırıldığında, basitleştirilmiş SSI daha az anahtarlama elemanı ve çift yönlü güç akış kabiliyeti gibi avantajlara sahiptir. Önerilen model öngörülü kontrol yöntemi, giriş ve çıkış akımlarını kontrol ederek eviricinin kararlı çalışmasını sağlayacak şekilde yapılandırılmıştır. Giriş ve çıkış bobin akımlarının referans değerleri, sırasıyla PI ve PR kontrolcüler ile üretilmiştir. PI kontrolcüye DA bara gerilim hatası uygulanırken, PR kontrolcüye AA taraf gerilim hatası uygulanmıştır. MÖK yöntemi, PI ve PR kontrolcü çıkışında elde edilen akım referansları ile tahmin edilen değer arasındaki hatayı minimize etmektedir. Böylece, dört kontrol değişkenine sahip basitleştirilmiş BKE eviricinin kontrolü sağlanmıştır. Önerilen kontrolcünün performansı MATLAB/Simulink platformunda gerçekleştirilen simülasyon çalışmalarıyla incelenmiştir. Farklı çalışma koşulları altında elde edilen kararlı durum ve dinamik yanıt sonuçları, önerilen yönteminin dört değişkenin eş zamanlı olarak başarılı bir şekilde kontrol edildiğini göstermektedir. Bununla birlikte çıkış gerilimi %2.34 gibi düşük bir toplam harmonik bozulmaya sahiptir.

References

  • [1] N. Sukesh, M. Pahlevaninezhad and P. K. Jain, "Analysis and Implementation of a Single-Stage Flyback PV Microinverter With Soft Switching," in IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1819-1833, April 2014, doi: 10.1109/TIE.2013.2263778.
  • [2] U. Polat, E. Sonuç and D. Yildirim, "Current Control of Grid-Connected Simplified Split-Source Converters (S3I) for Single Phase Photovoltaic Microinverter Application," 2023 10th International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkiye, 2023, pp. 391-396, doi: 10.1109/ICEEE59925.2023.00077.
  • [3] Y. Elthokaby, I. Abdelsalam, N. Abdel-Rahim, I. Mohamed, "Standalone PV-based single-phase split-source inverter using model-predictive control, " Alexandria Engineering Journal, Vol. 62, 2023, p: 357-367, doi.org/10.1016/j.aej.2022.07.035.
  • [4] A. Stone, M. Rasheduzzaman and P. Fajri, "A Review of Single-Phase Single-Stage DC/AC Boost Inverter Topologies and Their Controllers," 2018 IEEE Conference on Technologies for Sustainability (SusTech), Long Beach, CA, USA, 2018, pp. 1-8, doi: 10.1109/SusTech.2018.8671380.
  • [5] S.D.S. Nunna, A.Ketha, S.S.G.Padamat, K.Rambabu, U.A.Kshirsagar, A.Tiruoathi, "A single-phase simplified DC-AC converter using DClink capacitors and an H-bridge, " Bullettion of Electrical Engineering and Informatics, vol.10, no.6, pp. 2964-2971, Dec.2021, doi:10.11591/eei.v10i6.2788.
  • [6] Y.A.Elthokaby, I. Abdelsalam, N. Abdel-Rahim, I. M. Abdealqawee "Model-predictive control based on Harris Hawks optimization for split-source inverter. " Bullettion of Electrical Engineering and Informatics, vol. 11, no. 4, pp. 2348~2358, Aug 2022, doi: 10.11591/eei.v11i4.3823.
  • [7] O. Ellabban and H. Abu-Rub, "Z-Source Inverter: Topology Improvements Review," in IEEE Industrial Electronics Magazine, vol. 10, no. 1, pp. 6-24, March 2016, doi: 10.1109/MIE.2015.2475475.
  • [8] A. Nahavandi, M. Roostaee and M. R. Azizi, "Single stage DC-AC boost converter," 2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC), Tehran, Iran, 2016, pp. 362-366, doi: 10.1109/PEDSTC.2016.7556888.
  • [9] A. Abdelhakim, P. Mattavelli, P. Davari and F. Blaabjerg, "Performance Evaluation of the Single-Phase Split-Source Inverter Using an Alternative DC–AC Configuration," in IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 363-373, Jan. 2018, doi: 10.1109/TIE.2017.2714122.
  • [10] S. S. Lee and Y. E. Heng, "Improved Single-Phase Split-Source Inverter With Hybrid Quasi-Sinusoidal and Constant PWM," in IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2024-2031, March 2017, doi: 10.1109/TIE.2016.2624724.
  • [11] S. S. Lee, A. S. T. Tan, D. Ishak, and R. Mohd-Mokhtar, "Single-Phase Simplified Split-Source Inverter (S3 I) for Boost DC–AC Power Conversion," IEEE Trans. Ind. Electron., vol. 66, no. 10, pp. 7643-7652, Oct. 2019, doi: 10.1109/TIE.2018.2886801.
  • [12] C. Yin, W. Ding, L. Ming and P. C. Loh, "Single-Stage Active Split-Source Inverter With High DC-Link Voltage Utilization," in IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6699-6711, June 2021, doi: 10.1109/TPEL.2020.3038688.
  • [13] H. Ribeiro, A. Pinto and B. Borges, "Single-stage DC-AC converter for photovoltaic systems," 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 2010, pp. 604-610, doi: 10.1109/ECCE.2010.5617957.
  • [14] N. Altin, S. Ozdemir, H. Komurcugil and I. Sefa, "Sliding-Mode Control in Natural Frame With Reduced Number of Sensors for Three-Phase Grid-Tied LCL-Interfaced Inverters," in IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2903-2913, April 2019, doi: 10.1109/TIE.2018.2847675.
  • [15] N. Güler, "Proportional Resonant and Proportional Integral Based Control Strategy for Single Phase Split Source Inverters," 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK, 2020, pp. 510-514, doi: 10.1109/ICRERA49962.2020.9242690.
  • [16] N. Güler, "Multi-objective cost function based finite control set-sliding mode control strategy for single-phase split source inverters," Control Engineering Practice, vol.122, 2022
  • [17] B. Wang et al., "Event-Triggered Model Predictive Control for Power Converters," in IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 715-720, Jan. 2021, doi: 10.1109/TIE.2019.2962489.
  • [18] N. Güler And S. Biricik, "Fotovoltaik Sistemler için Üç Fazlı Evirici Tasarımı ve Kontrolü," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol.9, no.1, pp.453-466, 2021
  • [19] N. Guler, S. Biricik, S. Bayhan and H. Komurcugil, "Model Predictive Control of DC–DC SEPIC Converters With Autotuning Weighting Factor," in IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 9433-9443, Oct. 2021, doi: 10.1109/TIE.2020.3026301.
  • [20] N. Muhammad, W. Shireen ve A. Hussain. "Model-Free Predictive Control and Its Applications " Energies 2022, 15(14), no. 14: 5131.
  • [21] M. Aly, E. M. Ahmed and M. Shoyama, "An improved model predictive controller for highly reliable grid connected photovoltaic multilevel inverters," 2017 IEEE International Telecommunications Energy Conference (INTELEC), Broadbeach, QLD, Australia, 2017, pp. 450-455, doi: 10.1109/INTLEC.2017.8214177.
  • [22] X. Li et al., "Model-Predictive Control With Parameter Identification for Multi-Dual-Active-Bridge Converters Achieving Accurate Power Balancing," in IEEE Transactions on Power Electronics, vol. 38, no. 9, pp. 10880-10894, Sept. 2023, doi: 10.1109/TPEL.2023.3290671.
  • [23] Zhang, Y., Liu, X., Li, B., Liu, J.: Robust predictive current control of PWM rectifier under unbalanced and distorted network. IET Power Electronics 14(4), 797–806 (2021),
  • [24] Yaramasu, M. Rivera, B. Wu and J. Rodriguez, "Model Predictive Current Control of Two-Level Four-Leg Inverters—Part I: Concept, Algorithm, and Simulation Analysis," in IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3459-3468, July 2013, doi: 10.1109/TPEL.2012.2227509.
  • [25] P. M. Kishore, A. Sabnaveesu and R. Bhimasingu, "High Gain Switched Inductor Split Source Inverter for Solar Energy Applications," 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India, 2020, pp. 1-6, doi: 10.1109/PIICON49524.2020.9113024.
  • [26] N. Guler and H. Komurcugil, "Energy Function Based Finite Control Set Predictive Control Strategy for Single-Phase Split Source Inverters," in IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 5669-5679, June 2022, doi: 10.1109/TIE.2021.3090715.
  • [27] C. Yin, Z. Xin, L. Ming and P. C. Loh, "Two Degrees of Freedom Power Decoupling Method for Single-Phase Split-Source Inverter," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 290-296, doi: 10.1109/APEC.2019.8722288.
  • [28] F. Bagheri, H. Komurcugil, O. Kukrer, N. Guler and S. Bayhan, "Multi-Input Multi-Output-Based Sliding-Mode Controller for Single-Phase Quasi-Z-Source Inverters," in IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6439-6449, Aug. 2020, doi: 10.1109/TIE.2019.2938494.
  • [29] S. Shelar, D. Bankar ve S. Bakre, "IEEE 519 Güç Sistemi Harmonikleri Standardının revizyonlarının gözden geçirilmesi (1981 ila 2022)," 2024 21. Uluslararası Harmonikler ve Güç Kalitesi Konferansı (ICHQP), Chengdu, Çin, 2024, s. 415-420, doi: 10.1109/ICHQP61174.2024.10768696. v

Model Predictive Control Method for Simplified Split Source Inverter

Year 2025, Volume: 13 Issue: 2, 718 - 731, 30.06.2025
https://doi.org/10.29109/gujsc.1622225

Abstract

In this paper, a Model Predictive Control (MPC) method for a simplified Split Source Inverter (SSI) is presented. The simplified SSI is structured by eliminating the diode and switches on the input side and adding an additional switch to the H-bridge of conventional SSI topologies. Compared to conventional SSI topologies, the simplified SSI has fewer switches and bidirectional power flow capability advantages. The proposed model predictive control method is configured to ensure stable operation of the inverter by controlling the input and output currents. The reference values of the input and output inductor currents are generated by PI and PR controllers, respectively. While the DC bus voltage error is applied to the PI controller, the AC side voltage error is applied to the PR controller. The proposed MPC method minimizes the error between the current references obtained by the PI and PR controllers and their predicted values. Thus, controlling the simplified BKE inverter that has four control variables is achieved. The performance of the proposed controller is investigated by simulation studies performed on the MATLAB/Simulink platform. The steady-state and dynamic response results obtained under different operating conditions show that the proposed MPC method successfully controls the four variables simultaneously. In addition, the output voltage has a low total harmonic distortion of 2.34%.

References

  • [1] N. Sukesh, M. Pahlevaninezhad and P. K. Jain, "Analysis and Implementation of a Single-Stage Flyback PV Microinverter With Soft Switching," in IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1819-1833, April 2014, doi: 10.1109/TIE.2013.2263778.
  • [2] U. Polat, E. Sonuç and D. Yildirim, "Current Control of Grid-Connected Simplified Split-Source Converters (S3I) for Single Phase Photovoltaic Microinverter Application," 2023 10th International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkiye, 2023, pp. 391-396, doi: 10.1109/ICEEE59925.2023.00077.
  • [3] Y. Elthokaby, I. Abdelsalam, N. Abdel-Rahim, I. Mohamed, "Standalone PV-based single-phase split-source inverter using model-predictive control, " Alexandria Engineering Journal, Vol. 62, 2023, p: 357-367, doi.org/10.1016/j.aej.2022.07.035.
  • [4] A. Stone, M. Rasheduzzaman and P. Fajri, "A Review of Single-Phase Single-Stage DC/AC Boost Inverter Topologies and Their Controllers," 2018 IEEE Conference on Technologies for Sustainability (SusTech), Long Beach, CA, USA, 2018, pp. 1-8, doi: 10.1109/SusTech.2018.8671380.
  • [5] S.D.S. Nunna, A.Ketha, S.S.G.Padamat, K.Rambabu, U.A.Kshirsagar, A.Tiruoathi, "A single-phase simplified DC-AC converter using DClink capacitors and an H-bridge, " Bullettion of Electrical Engineering and Informatics, vol.10, no.6, pp. 2964-2971, Dec.2021, doi:10.11591/eei.v10i6.2788.
  • [6] Y.A.Elthokaby, I. Abdelsalam, N. Abdel-Rahim, I. M. Abdealqawee "Model-predictive control based on Harris Hawks optimization for split-source inverter. " Bullettion of Electrical Engineering and Informatics, vol. 11, no. 4, pp. 2348~2358, Aug 2022, doi: 10.11591/eei.v11i4.3823.
  • [7] O. Ellabban and H. Abu-Rub, "Z-Source Inverter: Topology Improvements Review," in IEEE Industrial Electronics Magazine, vol. 10, no. 1, pp. 6-24, March 2016, doi: 10.1109/MIE.2015.2475475.
  • [8] A. Nahavandi, M. Roostaee and M. R. Azizi, "Single stage DC-AC boost converter," 2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC), Tehran, Iran, 2016, pp. 362-366, doi: 10.1109/PEDSTC.2016.7556888.
  • [9] A. Abdelhakim, P. Mattavelli, P. Davari and F. Blaabjerg, "Performance Evaluation of the Single-Phase Split-Source Inverter Using an Alternative DC–AC Configuration," in IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 363-373, Jan. 2018, doi: 10.1109/TIE.2017.2714122.
  • [10] S. S. Lee and Y. E. Heng, "Improved Single-Phase Split-Source Inverter With Hybrid Quasi-Sinusoidal and Constant PWM," in IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2024-2031, March 2017, doi: 10.1109/TIE.2016.2624724.
  • [11] S. S. Lee, A. S. T. Tan, D. Ishak, and R. Mohd-Mokhtar, "Single-Phase Simplified Split-Source Inverter (S3 I) for Boost DC–AC Power Conversion," IEEE Trans. Ind. Electron., vol. 66, no. 10, pp. 7643-7652, Oct. 2019, doi: 10.1109/TIE.2018.2886801.
  • [12] C. Yin, W. Ding, L. Ming and P. C. Loh, "Single-Stage Active Split-Source Inverter With High DC-Link Voltage Utilization," in IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6699-6711, June 2021, doi: 10.1109/TPEL.2020.3038688.
  • [13] H. Ribeiro, A. Pinto and B. Borges, "Single-stage DC-AC converter for photovoltaic systems," 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 2010, pp. 604-610, doi: 10.1109/ECCE.2010.5617957.
  • [14] N. Altin, S. Ozdemir, H. Komurcugil and I. Sefa, "Sliding-Mode Control in Natural Frame With Reduced Number of Sensors for Three-Phase Grid-Tied LCL-Interfaced Inverters," in IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2903-2913, April 2019, doi: 10.1109/TIE.2018.2847675.
  • [15] N. Güler, "Proportional Resonant and Proportional Integral Based Control Strategy for Single Phase Split Source Inverters," 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK, 2020, pp. 510-514, doi: 10.1109/ICRERA49962.2020.9242690.
  • [16] N. Güler, "Multi-objective cost function based finite control set-sliding mode control strategy for single-phase split source inverters," Control Engineering Practice, vol.122, 2022
  • [17] B. Wang et al., "Event-Triggered Model Predictive Control for Power Converters," in IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 715-720, Jan. 2021, doi: 10.1109/TIE.2019.2962489.
  • [18] N. Güler And S. Biricik, "Fotovoltaik Sistemler için Üç Fazlı Evirici Tasarımı ve Kontrolü," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol.9, no.1, pp.453-466, 2021
  • [19] N. Guler, S. Biricik, S. Bayhan and H. Komurcugil, "Model Predictive Control of DC–DC SEPIC Converters With Autotuning Weighting Factor," in IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 9433-9443, Oct. 2021, doi: 10.1109/TIE.2020.3026301.
  • [20] N. Muhammad, W. Shireen ve A. Hussain. "Model-Free Predictive Control and Its Applications " Energies 2022, 15(14), no. 14: 5131.
  • [21] M. Aly, E. M. Ahmed and M. Shoyama, "An improved model predictive controller for highly reliable grid connected photovoltaic multilevel inverters," 2017 IEEE International Telecommunications Energy Conference (INTELEC), Broadbeach, QLD, Australia, 2017, pp. 450-455, doi: 10.1109/INTLEC.2017.8214177.
  • [22] X. Li et al., "Model-Predictive Control With Parameter Identification for Multi-Dual-Active-Bridge Converters Achieving Accurate Power Balancing," in IEEE Transactions on Power Electronics, vol. 38, no. 9, pp. 10880-10894, Sept. 2023, doi: 10.1109/TPEL.2023.3290671.
  • [23] Zhang, Y., Liu, X., Li, B., Liu, J.: Robust predictive current control of PWM rectifier under unbalanced and distorted network. IET Power Electronics 14(4), 797–806 (2021),
  • [24] Yaramasu, M. Rivera, B. Wu and J. Rodriguez, "Model Predictive Current Control of Two-Level Four-Leg Inverters—Part I: Concept, Algorithm, and Simulation Analysis," in IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3459-3468, July 2013, doi: 10.1109/TPEL.2012.2227509.
  • [25] P. M. Kishore, A. Sabnaveesu and R. Bhimasingu, "High Gain Switched Inductor Split Source Inverter for Solar Energy Applications," 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India, 2020, pp. 1-6, doi: 10.1109/PIICON49524.2020.9113024.
  • [26] N. Guler and H. Komurcugil, "Energy Function Based Finite Control Set Predictive Control Strategy for Single-Phase Split Source Inverters," in IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 5669-5679, June 2022, doi: 10.1109/TIE.2021.3090715.
  • [27] C. Yin, Z. Xin, L. Ming and P. C. Loh, "Two Degrees of Freedom Power Decoupling Method for Single-Phase Split-Source Inverter," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 290-296, doi: 10.1109/APEC.2019.8722288.
  • [28] F. Bagheri, H. Komurcugil, O. Kukrer, N. Guler and S. Bayhan, "Multi-Input Multi-Output-Based Sliding-Mode Controller for Single-Phase Quasi-Z-Source Inverters," in IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6439-6449, Aug. 2020, doi: 10.1109/TIE.2019.2938494.
  • [29] S. Shelar, D. Bankar ve S. Bakre, "IEEE 519 Güç Sistemi Harmonikleri Standardının revizyonlarının gözden geçirilmesi (1981 ila 2022)," 2024 21. Uluslararası Harmonikler ve Güç Kalitesi Konferansı (ICHQP), Chengdu, Çin, 2024, s. 415-420, doi: 10.1109/ICHQP61174.2024.10768696. v
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Power Electronics, Control Theoryand Applications
Journal Section Tasarım ve Teknoloji
Authors

Ali Şükrü Eyüboğlu 0000-0001-9353-1326

Naki Güler 0000-0003-4145-4247

Early Pub Date June 20, 2025
Publication Date June 30, 2025
Submission Date January 17, 2025
Acceptance Date May 4, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Eyüboğlu, A. Ş., & Güler, N. (2025). Basitleştirilmiş Bölünmüş Kaynaklı Evirici İçin Model Öngörülü Kontrol Yöntemi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(2), 718-731. https://doi.org/10.29109/gujsc.1622225

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526