Research Article
BibTex RIS Cite

Crystallisation behaviour of polypropylene in fused deposition modelling process

Year 2025, Volume: 13 Issue: 2, 440 - 449, 30.06.2025
https://doi.org/10.29109/gujsc.1626366

Abstract

Additive manufacturing technologies have gained significant attention due to their inherent flexibility when compared to traditional manufacturing processes. In the most commonly used additive manufacturing method, Fused Deposition Modelling (FDM), typically thermoplastic polymer materials are extruded layer by layer to produce three-dimensional parts. The production of semi-crystalline polymer materials using the FDM process, which are significantly affected by temperature changes in terms of their crystallisation behaviour, impacts the mechanical properties due to high cooling rates in FDM. In this study, the crystallisation behaviour of polypropylene during the FDM process was examined. In this context, a heat transfer model was initially created to simulate layer-by-layer production in an FDM printer, which estimates the temperature profile in the part. This model was then coupled to a crystallisation model to predict the evolution of relative crystallinity across the layers. The results show that the crystallisation rate of the part, and consequently its mechanical properties, can be altered by carefully adjusting the heating and cooling processes during the process.

References

  • [1] I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition. Springer New York, 2015. doi: 10.1007/978-1-4939-2113-3.
  • [2] W. Yu, X. Wang, E. Ferraris, and J. Zhang, “Melt crystallization of PLA/Talc in fused filament fabrication,” Mater Des, vol. 182, p. 108013, Nov. 2019, doi: 10.1016/J.MATDES.2019.108013.
  • [3] A. Costanzo, U. Croce, R. Spotorno, S. E. Fenni, and D. Cavallo, “Fused Deposition Modeling of Polyamides: Crystallization and Weld Formation,” Polymers 2020, Vol. 12, Page 2980, vol. 12, no. 12, p. 2980, Dec. 2020, doi: 10.3390/POLYM12122980.
  • [4] O. Luzanin, D. Movrin, V. Stathopoulos, P. Pandis, T. Radusin, and V. Guduric, “Impact of processing parameters on tensile strength, in-process crystallinity and mesostructure in FDM-fabricated PLA specimens,” Rapid Prototyp J, vol. 25, no. 8, pp. 1398–1410, Sep. 2019, doi: 10.1108/RPJ-12-2018-0316/FULL/PDF.
  • [5] O. S. Carneiro, A. F. Silva, and R. Gomes, “Fused deposition modeling with polypropylene,” Mater Des, vol. 83, pp. 768–776, Oct. 2015, doi: 10.1016/J.MATDES.2015.06.053.
  • [6] A. Barzegar, S. Karimi, E. F. Sukur, H. S. Sas, and M. Yildiz, “Effect of fiber orientation on temperature history during laser-assisted thermoplastic fiber placement,” https://doi.org/10.1177/07316844221143448, vol. 42, no. 17–18, pp. 953–968, Nov. 2022, doi: 10.1177/07316844221143448.
  • [7] H. Pérez-Martín, P. Mackenzie, A. Baidak, C. M. Ó Brádaigh, and D. Ray, “Crystallisation behaviour and morphological studies of PEKK and carbon fibre/PEKK composites,” Compos Part A Appl Sci Manuf, vol. 159, p. 106992, Aug. 2022, doi: 10.1016/J.COMPOSITESA.2022.106992.
  • [8] C. McIlroy and R. S. Graham, “Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts,” Addit Manuf, vol. 24, pp. 323–340, Dec. 2018, doi: 10.1016/J.ADDMA.2018.10.018.
  • [9] P. Sreejith, K. Kannan, and K. R. Rajagopal, “A thermodynamic framework for the additive manufacturing of crystallizing polymers. Part I: A theory that accounts for phase change, shrinkage, warpage and residual stress,” Int J Eng Sci, vol. 183, Feb. 2023, doi: 10.1016/j.ijengsci.2022.103789.
  • [10] A. Antony Samy, A. Golbang, E. Harkin-Jones, E. Archer, and A. McIlhagger, “Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: Effect of printing conditions,” CIRP J Manuf Sci Technol, vol. 33, pp. 443–453, May 2021, doi: 10.1016/J.CIRPJ.2021.04.012.
  • [11] C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao, and C. Shi, “Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material,” 2017, doi: 10.1016/j.jmatprotec.2017.04.027.
  • [12] M. Spoerk, J. Sapkota, G. Weingrill, T. Fischinger, F. Arbeiter, and C. Holzer, “Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturing,” Macromol Mater Eng, vol. 302, no. 10, Oct. 2017, doi: 10.1002/MAME.201700143.
  • [13] A. A. Samy, A. Golbang, E. Harkin-Jones, E. Archer, M. Dahale, and A. McIlhagger, “Influence of Ambient Temperature on Part Distortion: A Simulation Study on Amorphous and Semi-Crystalline Polymer,” Polymers 2022, Vol. 14, Page 879, vol. 14, no. 5, p. 879, Feb. 2022, doi: 10.3390/POLYM14050879.
  • [14] A. A. Samy et al., “Influence of Raster Pattern on Residual Stress and Part Distortion in FDM of Semi-Crystalline Polymers: A Simulation Study,” Polymers 2022, Vol. 14, Page 2746, vol. 14, no. 13, p. 2746, Jul. 2022, doi: 10.3390/POLYM14132746.
  • [15] T. Tábi, I. E. Sajó, F. Szabó, A. S. Luyt, and J. G. Kovács, “Crystalline structure of annealed polylactic acid and its relation to processing,” Express Polym Lett, vol. 4, no. 10, pp. 659–668, Oct. 2010, doi: 10.3144/EXPRESSPOLYMLETT.2010.80.
  • [16] M. Lay, N. L. N. Thajudin, Z. A. A. Hamid, A. Rusli, M. K. Abdullah, and R. K. Shuib, “Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding,” Compos B Eng, vol. 176, p. 107341, Nov. 2019, doi: 10.1016/J.COMPOSITESB.2019.107341.
  • [17] Z. Wang, Z. Ma, and L. Li, “Flow-Induced Crystallization of Polymers: Molecular and Thermodynamic Considerations,” Macromolecules, vol. 49, no. 5, pp. 1505–1517, Mar. 2016, doi: 10.1021/ACS.MACROMOL.5B02688/ASSET/IMAGES/LARGE/MA-2015-02688W_0005.JPEG.
  • [18] M. Pourali, A. Adisa, S. Salunke, and A. M. Peterson, “Crystallization modeling of two semi-crystalline polyamides during material extrusion additive manufacturing,” Scientific Reports 2024 14:1, vol. 14, no. 1, pp. 1–16, Nov. 2024, doi: 10.1038/s41598-024-77635-9.
  • [19] N. Schiavone, V. Verney, and H. Askanian, “Effect of 3D Printing Temperature Profile on Polymer Materials Behavior,” 3D Print Addit Manuf, vol. 7, no. 6, p. 311, Dec. 2020, doi: 10.1089/3DP.2020.0175.
  • [20] T. D’Amico and A. M. Peterson, “Bead parameterization of desktop and room-scale material extrusion additive manufacturing: How print speed and thermal properties affect heat transfer,” Addit Manuf, vol. 34, p. 101239, Aug. 2020, doi: 10.1016/J.ADDMA.2020.101239.
  • [21] M. Avrami, “Kinetics of Phase Change. I General Theory,” J Chem Phys, vol. 7, no. 12, pp. 1103–1112, Dec. 1939, doi: 10.1063/1.1750380.
  • [22] K. Nakamura, T. Watanabe, K. Katayama, and T. Amano, “Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions,” J Appl Polym Sci, vol. 16, no. 5, pp. 1077–1091, May 1972, doi: 10.1002/APP.1972.070160503.
  • [23] E. Koscher and R. Fulchiron, “Influence of shear on polypropylene crystallization: morphology development and kinetics,” Polymer (Guildf), vol. 43, no. 25, pp. 6931–6942, Jan. 2002, doi: 10.1016/S0032-3861(02)00628-6.
  • [24] R. Le Goff, G. Poutot, D. Delaunay, R. Fulchiron, and E. Koscher, “Study and modeling of heat transfer during the solidification of semi-crystalline polymers,” Int J Heat Mass Transf, vol. 48, no. 25–26, pp. 5417–5430, Dec. 2005, doi: 10.1016/J.IJHEATMASSTRANSFER.2005.06.015.
  • [25] Y. Furushima, C. Schick, and A. Toda, “Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry,” Polymer Crystallization, vol. 1, no. 2, p. e10005, Aug. 2018, doi: 10.1002/PCR2.10005.
  • [26] M. Spoerk et al., “Polypropylene Filled With Glass Spheres in Extrusion-Based Additive Manufacturing: Effect of Filler Size and Printing Chamber Temperature,” Macromol Mater Eng, vol. 303, no. 7, p. 1800179, Jul. 2018, doi: 10.1002/MAME.201800179.
  • [27] “Ultimate Materials Guide - 3D Printing with Polypropylene.” Accessed: Jan. 23, 2025. [Online]. Available: https://www.simplify3d.com/resources/materials-guide/polypropylene/
  • [28] H. R. Vanaei, S. Khelladi, M. Deligant, M. Shirinbayan, and A. Tcharkhtchi, “Numerical Prediction for Temperature Profile of Parts Manufactured using Fused Filament Fabrication,” J Manuf Process, vol. 76, pp. 548–558, Apr. 2022, doi: 10.1016/J.JMAPRO.2022.02.042.
  • [29] E. Barocio, B. Brenken, A. Favaloro, and R. B. Pipes, “Interlayer fusion bonding of semi-crystalline polymer composites in extrusion deposition additive manufacturing,” Compos Sci Technol, vol. 230, p. 109334, Nov. 2022, doi: 10.1016/J.COMPSCITECH.2022.109334.

Eriyik yığma modelleme işlemi esnasında polipropilenin kristalizasyon davranışı

Year 2025, Volume: 13 Issue: 2, 440 - 449, 30.06.2025
https://doi.org/10.29109/gujsc.1626366

Abstract

Eklemeli imalat teknolojileri, geleneksel imalat yöntemlerine kıyasla daha fazla esnekliğe izin veren doğaları nedeniyle giderek popülerleşmektedir. Bu teknolojilerin en yaygın kullanılan çeşidi olan eriyik yığma modelleme (EYM) işleminde çoğunlukla termoplastik polimer malzemeler katmanlar halinde serilerek üç boyutlu parçalar üretilir. Kristalizasyon davranışı sıcaklık değişimlerinden oldukça fazla etkilenen yarı kristal polimer malzemelerin EYM ile üretiminde, işlemdeki yüksek soğuma hızları mekanik özellikler üzerinde etkili olmaktadır. Bu çalışmada polipropilen türü yarı kristal malzemenin EYM işlemi esnasındaki kristalizasyon davranışı incelenmiştir. Bu bağlamda öncelikle katmanlı üretim metodunu simüle ederek sıcaklık profilini tahmin bir ısı transferi oluşturulmuş, bu model daha sonra kristalizasyon kinetiğini hesaplayan bir başka modelle iki taraflı olarak bağlanmıştır. Geliştirilen model farklı üretim parametrelerindeki kristalizasyon oranını eş zamanlı olarak tahmin edebilmektedir. Sonuçlar, malzeme kristalizasyon oranının ve buna bağlı olarak mekanik özelliklerin, EYM işlemi esnasındaki ısıtma ve soğutma işlemlerinin dikkatli şekilde ayarlanarak değiştirilebileceğini göstermektedir.

References

  • [1] I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition. Springer New York, 2015. doi: 10.1007/978-1-4939-2113-3.
  • [2] W. Yu, X. Wang, E. Ferraris, and J. Zhang, “Melt crystallization of PLA/Talc in fused filament fabrication,” Mater Des, vol. 182, p. 108013, Nov. 2019, doi: 10.1016/J.MATDES.2019.108013.
  • [3] A. Costanzo, U. Croce, R. Spotorno, S. E. Fenni, and D. Cavallo, “Fused Deposition Modeling of Polyamides: Crystallization and Weld Formation,” Polymers 2020, Vol. 12, Page 2980, vol. 12, no. 12, p. 2980, Dec. 2020, doi: 10.3390/POLYM12122980.
  • [4] O. Luzanin, D. Movrin, V. Stathopoulos, P. Pandis, T. Radusin, and V. Guduric, “Impact of processing parameters on tensile strength, in-process crystallinity and mesostructure in FDM-fabricated PLA specimens,” Rapid Prototyp J, vol. 25, no. 8, pp. 1398–1410, Sep. 2019, doi: 10.1108/RPJ-12-2018-0316/FULL/PDF.
  • [5] O. S. Carneiro, A. F. Silva, and R. Gomes, “Fused deposition modeling with polypropylene,” Mater Des, vol. 83, pp. 768–776, Oct. 2015, doi: 10.1016/J.MATDES.2015.06.053.
  • [6] A. Barzegar, S. Karimi, E. F. Sukur, H. S. Sas, and M. Yildiz, “Effect of fiber orientation on temperature history during laser-assisted thermoplastic fiber placement,” https://doi.org/10.1177/07316844221143448, vol. 42, no. 17–18, pp. 953–968, Nov. 2022, doi: 10.1177/07316844221143448.
  • [7] H. Pérez-Martín, P. Mackenzie, A. Baidak, C. M. Ó Brádaigh, and D. Ray, “Crystallisation behaviour and morphological studies of PEKK and carbon fibre/PEKK composites,” Compos Part A Appl Sci Manuf, vol. 159, p. 106992, Aug. 2022, doi: 10.1016/J.COMPOSITESA.2022.106992.
  • [8] C. McIlroy and R. S. Graham, “Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts,” Addit Manuf, vol. 24, pp. 323–340, Dec. 2018, doi: 10.1016/J.ADDMA.2018.10.018.
  • [9] P. Sreejith, K. Kannan, and K. R. Rajagopal, “A thermodynamic framework for the additive manufacturing of crystallizing polymers. Part I: A theory that accounts for phase change, shrinkage, warpage and residual stress,” Int J Eng Sci, vol. 183, Feb. 2023, doi: 10.1016/j.ijengsci.2022.103789.
  • [10] A. Antony Samy, A. Golbang, E. Harkin-Jones, E. Archer, and A. McIlhagger, “Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: Effect of printing conditions,” CIRP J Manuf Sci Technol, vol. 33, pp. 443–453, May 2021, doi: 10.1016/J.CIRPJ.2021.04.012.
  • [11] C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao, and C. Shi, “Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material,” 2017, doi: 10.1016/j.jmatprotec.2017.04.027.
  • [12] M. Spoerk, J. Sapkota, G. Weingrill, T. Fischinger, F. Arbeiter, and C. Holzer, “Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturing,” Macromol Mater Eng, vol. 302, no. 10, Oct. 2017, doi: 10.1002/MAME.201700143.
  • [13] A. A. Samy, A. Golbang, E. Harkin-Jones, E. Archer, M. Dahale, and A. McIlhagger, “Influence of Ambient Temperature on Part Distortion: A Simulation Study on Amorphous and Semi-Crystalline Polymer,” Polymers 2022, Vol. 14, Page 879, vol. 14, no. 5, p. 879, Feb. 2022, doi: 10.3390/POLYM14050879.
  • [14] A. A. Samy et al., “Influence of Raster Pattern on Residual Stress and Part Distortion in FDM of Semi-Crystalline Polymers: A Simulation Study,” Polymers 2022, Vol. 14, Page 2746, vol. 14, no. 13, p. 2746, Jul. 2022, doi: 10.3390/POLYM14132746.
  • [15] T. Tábi, I. E. Sajó, F. Szabó, A. S. Luyt, and J. G. Kovács, “Crystalline structure of annealed polylactic acid and its relation to processing,” Express Polym Lett, vol. 4, no. 10, pp. 659–668, Oct. 2010, doi: 10.3144/EXPRESSPOLYMLETT.2010.80.
  • [16] M. Lay, N. L. N. Thajudin, Z. A. A. Hamid, A. Rusli, M. K. Abdullah, and R. K. Shuib, “Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding,” Compos B Eng, vol. 176, p. 107341, Nov. 2019, doi: 10.1016/J.COMPOSITESB.2019.107341.
  • [17] Z. Wang, Z. Ma, and L. Li, “Flow-Induced Crystallization of Polymers: Molecular and Thermodynamic Considerations,” Macromolecules, vol. 49, no. 5, pp. 1505–1517, Mar. 2016, doi: 10.1021/ACS.MACROMOL.5B02688/ASSET/IMAGES/LARGE/MA-2015-02688W_0005.JPEG.
  • [18] M. Pourali, A. Adisa, S. Salunke, and A. M. Peterson, “Crystallization modeling of two semi-crystalline polyamides during material extrusion additive manufacturing,” Scientific Reports 2024 14:1, vol. 14, no. 1, pp. 1–16, Nov. 2024, doi: 10.1038/s41598-024-77635-9.
  • [19] N. Schiavone, V. Verney, and H. Askanian, “Effect of 3D Printing Temperature Profile on Polymer Materials Behavior,” 3D Print Addit Manuf, vol. 7, no. 6, p. 311, Dec. 2020, doi: 10.1089/3DP.2020.0175.
  • [20] T. D’Amico and A. M. Peterson, “Bead parameterization of desktop and room-scale material extrusion additive manufacturing: How print speed and thermal properties affect heat transfer,” Addit Manuf, vol. 34, p. 101239, Aug. 2020, doi: 10.1016/J.ADDMA.2020.101239.
  • [21] M. Avrami, “Kinetics of Phase Change. I General Theory,” J Chem Phys, vol. 7, no. 12, pp. 1103–1112, Dec. 1939, doi: 10.1063/1.1750380.
  • [22] K. Nakamura, T. Watanabe, K. Katayama, and T. Amano, “Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions,” J Appl Polym Sci, vol. 16, no. 5, pp. 1077–1091, May 1972, doi: 10.1002/APP.1972.070160503.
  • [23] E. Koscher and R. Fulchiron, “Influence of shear on polypropylene crystallization: morphology development and kinetics,” Polymer (Guildf), vol. 43, no. 25, pp. 6931–6942, Jan. 2002, doi: 10.1016/S0032-3861(02)00628-6.
  • [24] R. Le Goff, G. Poutot, D. Delaunay, R. Fulchiron, and E. Koscher, “Study and modeling of heat transfer during the solidification of semi-crystalline polymers,” Int J Heat Mass Transf, vol. 48, no. 25–26, pp. 5417–5430, Dec. 2005, doi: 10.1016/J.IJHEATMASSTRANSFER.2005.06.015.
  • [25] Y. Furushima, C. Schick, and A. Toda, “Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry,” Polymer Crystallization, vol. 1, no. 2, p. e10005, Aug. 2018, doi: 10.1002/PCR2.10005.
  • [26] M. Spoerk et al., “Polypropylene Filled With Glass Spheres in Extrusion-Based Additive Manufacturing: Effect of Filler Size and Printing Chamber Temperature,” Macromol Mater Eng, vol. 303, no. 7, p. 1800179, Jul. 2018, doi: 10.1002/MAME.201800179.
  • [27] “Ultimate Materials Guide - 3D Printing with Polypropylene.” Accessed: Jan. 23, 2025. [Online]. Available: https://www.simplify3d.com/resources/materials-guide/polypropylene/
  • [28] H. R. Vanaei, S. Khelladi, M. Deligant, M. Shirinbayan, and A. Tcharkhtchi, “Numerical Prediction for Temperature Profile of Parts Manufactured using Fused Filament Fabrication,” J Manuf Process, vol. 76, pp. 548–558, Apr. 2022, doi: 10.1016/J.JMAPRO.2022.02.042.
  • [29] E. Barocio, B. Brenken, A. Favaloro, and R. B. Pipes, “Interlayer fusion bonding of semi-crystalline polymer composites in extrusion deposition additive manufacturing,” Compos Sci Technol, vol. 230, p. 109334, Nov. 2022, doi: 10.1016/J.COMPSCITECH.2022.109334.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Numerical Methods in Mechanical Engineering
Journal Section Tasarım ve Teknoloji
Authors

Murat Çelik 0000-0003-3083-739X

Early Pub Date May 15, 2025
Publication Date June 30, 2025
Submission Date January 24, 2025
Acceptance Date March 10, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Çelik, M. (2025). Eriyik yığma modelleme işlemi esnasında polipropilenin kristalizasyon davranışı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(2), 440-449. https://doi.org/10.29109/gujsc.1626366

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526