Research Article
BibTex RIS Cite

Production of D2 and 17-4 PH Bimetallic Materials and Investigation of Their Mechanical Properties in Atomic Diffusion Additive Manufacturing Method

Year 2025, Volume: 13 Issue: 2, 488 - 498, 30.06.2025
https://doi.org/10.29109/gujsc.1662944

Abstract

The study focused on the production of bimetallic material from 17-4 stainless steel and D2 tool steel using the Markforged brand Metal X device. In particular, despite the different physical and mechanical properties of the materials used, studies were carried out on the production of bimetal and the interfacial behavior thanks to the use of different filaments. The sample designed in cylindrical geometry was printed using layer-by-layer extrusion. Then, a debinding and sintering process was performed according to the ADAM (Atomic Diffusion Additive Manufacturing) methodology. In particular, the sample was passed through the production stages in a vertical position to ensure interface compatibility and prevent agglomeration. The produced sample's density, hardness, and microstructure properties were examined. According to the results, bimetal and hybrid material production can be carried out using the Metal X device.

Supporting Institution

Gazi University

Project Number

FBG-2022-7860

Thanks

Gazi University BAP

References

  • [1] Hull, C. W. (1984). Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl., No. 638905, Filed.
  • [2] Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (Vol. 17, pp. 160-186). Cham, Switzerland: Springer.
  • [3] Standard, A. S. T. M. (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a, 46, 10918-10928.
  • [4] Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/s11465-013-0248-8
  • [5] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • [6] Markforged. (2023). Metal X system datasheet. Retrieved from https://markforged.com
  • [7] DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in materials science, 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001
  • [8] Liu, Y., Jiang, D., & Ning, F. (2025). Sintering Mechanisms in Metal Extrusion-based Sintering-assisted Additive Manufacturing: State-of-the-Art and Perspectives. Journal of Manufacturing Science and Engineering, 1-70.. https://doi.org/10.1115/1.4068066
  • [9] Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering: R: Reports, 129, 1-16. https://doi.org/10.1016/j.mser.2018.04.001
  • [10] Tammas-Williams, S., & Withers, P. J. (2016). The application of additive manufacturing in the aerospace sector: A review. Materials Science and Technology, 32(8), 641–648. https://doi.org/10.1179/1743284715Y.0000000078
  • [11] Jang, D., Kim, J., & Oh, I. (2018). Interfacial bonding characteristics of dissimilar metal manufactured by additive manufacturing. Journal of Materials Processing Technology, 255, 715–722. https://doi.org/10.1016/j.jmatprotec.2017.12.027
  • [12] Röttger, A., Wieczorek, L., Schmidtseifer, N., Katzwinkel, T., Blüm, M., & Löwer, M. (2025). Additive manufacturing of carbon-martensitic hardening ledeburitic cold work tool steels using Fused Filament Fabrication and subsequent Supersolidus Liquid-Phase Sintering. Progress in Additive Manufacturing, 10(1), 679-700. https://doi.org/10.1007/s40964-024-00650-9
  • [13] Jang, D., Kim, J., & Oh, I. (2018). Interfacial bonding characteristics of dissimilar metal manufactured by additive manufacturing. Journal of Materials Processing Technology, 255, 715–722. https://doi.org/10.1016/j.jmatprotec.2017.12.027
  • [14] Röttger, A., Wieczorek, L., Schmidtseifer, N., Katzwinkel, T., Blüm, M., & Löwer, M. (2025). Additive manufacturing of carbon-martensitic hardening ledeburitic cold work tool steels using Fused Filament Fabrication and subsequent Supersolidus Liquid-Phase Sintering. Progress in Additive Manufacturing, 10(1), 679-700. https://doi.org/10.1007/s40964-024-00650-9
  • [15] Wieczorek, L., Katzwinkel, T., Blüm, M., Löwer, M., & Röttger, A. (2022). Supersolidus Liquid Phase Sintering and Heat Treatment on Atomic Diffusion Additive Manufacturing Produced Ledeburitic Cold Work Tool Steel. HTM Journal of Heat Treatment and Materials, 77(4), 269-283. https://doi.org/10.1515/htm-2022-1019
  • [16] Zou, J., Grosdidier, T., Zhang, K., & Dong, C. (2006). Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel. Acta Materialia, 54(20), 5409-5419. https://doi.org/10.1016/j.actamat.2006.05.053
  • [17] Sabooni, S., Chabok, A., Feng, S. C., Blaauw, H., Pijper, T. C., Yang, H. J., & Pei, Y. T. (2021). Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties. Additive Manufacturing, 46, 102176. https://doi.org/10.1016/j.addma.2021.102176
  • [18] Rodriguez, J., Zuriarrain, A., Madariaga, A., Arrazola, P. J., Dominguez, E., Fraile, I., & Soler, D. (2023). Mechanical Properties and Fatigue Performance of 17-4 PH Stainless Steel Manufactured by Atomic Diffusion Additive Manufacturing Technology. Journal of Manufacturing and Materials Processing, 7(5), 172. https://doi.org/10.3390/jmmp7050172
  • [19] Jacob, J., Pejak Simunec, D., Kandjani, A. E. Z., Trinchi, A., & Ippolito, S. (2024). A review of fused filament fabrication of metal parts (Metal FFF): Current developments and future challenges. Technologies, 12(12), 267. https://www.mdpi.com/2227-7080/12/12/267
  • [20] Reddy, V. V., Valli, P. M., & Kumar, A. (2015). Influence of process parameters on characteristics of electrical discharge machining of PH17-4 stainless steel. Journal of Advanced Manufacturing Technology, 9(3), 215–224. https://doi.org/10.1142/S0219686715500122
  • [21] Michla, J.R.J., Rajkumar, C.R. Surface Microstructure Evolution of Additively Manufactured 17-4 PH Stainless Steel by Nitroxy-Quenching Polishing Quenching Process. J. of Materi Eng and Perform (2025). https://doi.org/10.1007/s11665-025-10650-7
  • [22] Gholipour, A., Shamanian, M., & Ashrafizadeh, F. (2011). Microstructure and wear behavior of stellite 6 cladding on 17-4 PH stainless steel. Journal of Alloys and Compounds, 509(14), 4905-4909. https://doi.org/10.1016/j.jallcom.2010.09.216
  • [23] Dong D, Wang J, Chen C, Tang X, Ye Y, Ren Z, Yin S, Yuan Z, Liu M, Zhou K. Influence of Aging Treatment Regimes on Microstructure and Mechanical Properties of Selective Laser Melted 17-4 PH Steel. Micromachines. 2023; 14(4):871. https://doi.org/10.3390/mi14040871
  • [24] Michla JRJ, Rajkumar CR. Corrosion behaviour of nitroxy-QPQ additively manufactured 17-4 PH steel on marine and nuclear reactor components. Surface Engineering. 2024;40(11-12):1113-1120. doi:10.1177/02670844241287344

Atomik Difüzyon Eklemeli İmalat Yönteminde, D2 ve 17-4 PH Bimetalik Malzeme Üretimi ve Mekanik Özelliklerinin İncelenmesi

Year 2025, Volume: 13 Issue: 2, 488 - 498, 30.06.2025
https://doi.org/10.29109/gujsc.1662944

Abstract

Yapılan çalışmada, Markforged marka Metal X cihazı kullanılarak 17-4 paslanmaz çeliği ve D2 takım çeliğini bimetalik malzeme üretimine odaklanılmıştır. Özellikle kullanılan malzemelerin farklı fiziksel ve mekanik özelliklere sahip olmalarına rağmen, farklı filament kullanımı sayesinde bimetal üretiminin ve arayüzey davranışı üzerine çalışmalar gerçekleştirilmiştir. Silindirik geometride tasarlanan numune, katman katman ekstrüzyon kullanılarak basılmış, ardından ADAM (Atomik Difüzyon Katkı Üretimi) metodolojisine göre bir bağlayıcı giderme ve sinterleme işlemi gerçekleştirilmiştir. Özellikle arayüzey uyumu sağlamak ve yığılmayı engellemek için numune dikey pozisyonda üretim safhalarından geçirilmiştir. Üretimi gerçekleştirilen numunenin yoğunluk, sertlik, mikroyapı özellikleri incelenmiştir. Elde edilen sonuçlara göre Metal X cihazı kullanılarak bimetal ve hibrit malzeme üretimi gerçekleştirilebilmektedir.

Project Number

FBG-2022-7860

References

  • [1] Hull, C. W. (1984). Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl., No. 638905, Filed.
  • [2] Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (Vol. 17, pp. 160-186). Cham, Switzerland: Springer.
  • [3] Standard, A. S. T. M. (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a, 46, 10918-10928.
  • [4] Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/s11465-013-0248-8
  • [5] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • [6] Markforged. (2023). Metal X system datasheet. Retrieved from https://markforged.com
  • [7] DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in materials science, 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001
  • [8] Liu, Y., Jiang, D., & Ning, F. (2025). Sintering Mechanisms in Metal Extrusion-based Sintering-assisted Additive Manufacturing: State-of-the-Art and Perspectives. Journal of Manufacturing Science and Engineering, 1-70.. https://doi.org/10.1115/1.4068066
  • [9] Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering: R: Reports, 129, 1-16. https://doi.org/10.1016/j.mser.2018.04.001
  • [10] Tammas-Williams, S., & Withers, P. J. (2016). The application of additive manufacturing in the aerospace sector: A review. Materials Science and Technology, 32(8), 641–648. https://doi.org/10.1179/1743284715Y.0000000078
  • [11] Jang, D., Kim, J., & Oh, I. (2018). Interfacial bonding characteristics of dissimilar metal manufactured by additive manufacturing. Journal of Materials Processing Technology, 255, 715–722. https://doi.org/10.1016/j.jmatprotec.2017.12.027
  • [12] Röttger, A., Wieczorek, L., Schmidtseifer, N., Katzwinkel, T., Blüm, M., & Löwer, M. (2025). Additive manufacturing of carbon-martensitic hardening ledeburitic cold work tool steels using Fused Filament Fabrication and subsequent Supersolidus Liquid-Phase Sintering. Progress in Additive Manufacturing, 10(1), 679-700. https://doi.org/10.1007/s40964-024-00650-9
  • [13] Jang, D., Kim, J., & Oh, I. (2018). Interfacial bonding characteristics of dissimilar metal manufactured by additive manufacturing. Journal of Materials Processing Technology, 255, 715–722. https://doi.org/10.1016/j.jmatprotec.2017.12.027
  • [14] Röttger, A., Wieczorek, L., Schmidtseifer, N., Katzwinkel, T., Blüm, M., & Löwer, M. (2025). Additive manufacturing of carbon-martensitic hardening ledeburitic cold work tool steels using Fused Filament Fabrication and subsequent Supersolidus Liquid-Phase Sintering. Progress in Additive Manufacturing, 10(1), 679-700. https://doi.org/10.1007/s40964-024-00650-9
  • [15] Wieczorek, L., Katzwinkel, T., Blüm, M., Löwer, M., & Röttger, A. (2022). Supersolidus Liquid Phase Sintering and Heat Treatment on Atomic Diffusion Additive Manufacturing Produced Ledeburitic Cold Work Tool Steel. HTM Journal of Heat Treatment and Materials, 77(4), 269-283. https://doi.org/10.1515/htm-2022-1019
  • [16] Zou, J., Grosdidier, T., Zhang, K., & Dong, C. (2006). Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel. Acta Materialia, 54(20), 5409-5419. https://doi.org/10.1016/j.actamat.2006.05.053
  • [17] Sabooni, S., Chabok, A., Feng, S. C., Blaauw, H., Pijper, T. C., Yang, H. J., & Pei, Y. T. (2021). Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties. Additive Manufacturing, 46, 102176. https://doi.org/10.1016/j.addma.2021.102176
  • [18] Rodriguez, J., Zuriarrain, A., Madariaga, A., Arrazola, P. J., Dominguez, E., Fraile, I., & Soler, D. (2023). Mechanical Properties and Fatigue Performance of 17-4 PH Stainless Steel Manufactured by Atomic Diffusion Additive Manufacturing Technology. Journal of Manufacturing and Materials Processing, 7(5), 172. https://doi.org/10.3390/jmmp7050172
  • [19] Jacob, J., Pejak Simunec, D., Kandjani, A. E. Z., Trinchi, A., & Ippolito, S. (2024). A review of fused filament fabrication of metal parts (Metal FFF): Current developments and future challenges. Technologies, 12(12), 267. https://www.mdpi.com/2227-7080/12/12/267
  • [20] Reddy, V. V., Valli, P. M., & Kumar, A. (2015). Influence of process parameters on characteristics of electrical discharge machining of PH17-4 stainless steel. Journal of Advanced Manufacturing Technology, 9(3), 215–224. https://doi.org/10.1142/S0219686715500122
  • [21] Michla, J.R.J., Rajkumar, C.R. Surface Microstructure Evolution of Additively Manufactured 17-4 PH Stainless Steel by Nitroxy-Quenching Polishing Quenching Process. J. of Materi Eng and Perform (2025). https://doi.org/10.1007/s11665-025-10650-7
  • [22] Gholipour, A., Shamanian, M., & Ashrafizadeh, F. (2011). Microstructure and wear behavior of stellite 6 cladding on 17-4 PH stainless steel. Journal of Alloys and Compounds, 509(14), 4905-4909. https://doi.org/10.1016/j.jallcom.2010.09.216
  • [23] Dong D, Wang J, Chen C, Tang X, Ye Y, Ren Z, Yin S, Yuan Z, Liu M, Zhou K. Influence of Aging Treatment Regimes on Microstructure and Mechanical Properties of Selective Laser Melted 17-4 PH Steel. Micromachines. 2023; 14(4):871. https://doi.org/10.3390/mi14040871
  • [24] Michla JRJ, Rajkumar CR. Corrosion behaviour of nitroxy-QPQ additively manufactured 17-4 PH steel on marine and nuclear reactor components. Surface Engineering. 2024;40(11-12):1113-1120. doi:10.1177/02670844241287344
There are 24 citations in total.

Details

Primary Language English
Subjects Powder Metallurgy, Manufacturing Metallurgy
Journal Section Tasarım ve Teknoloji
Authors

Ufuk Taşcı 0000-0002-8577-443X

Project Number FBG-2022-7860
Early Pub Date May 22, 2025
Publication Date June 30, 2025
Submission Date March 21, 2025
Acceptance Date May 2, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Taşcı, U. (2025). Production of D2 and 17-4 PH Bimetallic Materials and Investigation of Their Mechanical Properties in Atomic Diffusion Additive Manufacturing Method. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(2), 488-498. https://doi.org/10.29109/gujsc.1662944

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526