Research Article
BibTex RIS Cite

Ship Double Bottom Construction Full Floors Design Improvement by Topology Optimization

Year 2025, Volume: 13 Issue: 2, 763 - 776, 30.06.2025
https://doi.org/10.29109/gujsc.1663786

Abstract

This study aims to reduce the structural weight of full floor elements used in commercial ship construction through topology optimization. In shipbuilding, steel plates are commonly used, and weight reduction is achieved by incorporating various openings. However, most of the existing opening designs are based on empirical standards, which are open to further optimization in terms of structural efficiency. This research proposes non-standard opening designs for full floor elements within the double bottom structures of ships with transverse framing systems, considering different widths (1.8–4.2 m) and thicknesses (10–40 mm). Using the shape optimization module of Autodesk Fusion 360 software, plate models with a height of 1200 mm were subjected to localized bottom loads. All analyses targeted a 50% reduction in structural weight. The optimization results determined the optimal number of openings and their geometric configurations for each width and thickness. Additionally, the optimized designs were evaluated through static stress analysis, identifying the maximum stress regions and their magnitudes. The findings indicate that increasing the width of the floor element results in a higher number of openings, while increasing thickness leads to larger corner radii around the openings. In all optimized models, the maximum stress value remained below the allowable limit of 150 MPa. Notably, the model with a width of 3.6 m, a thickness of 20 mm, and 50% material conservation demonstrated the most favorable structural performance. This study presents valuable insights into the structural weight reduction of full floors within ship double bottom structures through topology optimization.

References

  • [1] Ehrlenspiel K, Kiewert A, Lindemann U, Hundal MS, editors. Factors that influence Manufacturing Costs and Procedures for Cost Reduction. Cost-Efficient Design, Berlin, Heidelberg: Springer Berlin Heidelberg; 2007, p. 143–384. https://doi.org/10.1007/978-3-540-34648-7_7.
  • [2] Novikov A V, Barmin AA, Mudrova AA, Yasinskaya Y V. System analysis of the features of using information models in shipbuilding. J Phys Conf Ser 2019;1333:032090. https://doi.org/10.1088/1742-6596/1333/3/032090.
  • [3] Kim H, Lee S-S, Park JH, Lee J-G. A model for a simulation-based shipbuilding system in a shipyard manufacturing process. Int J Comput Integr Manuf 2005;18:427–41. https://doi.org/10.1080/09511920500064789.
  • [4] Yilmaz AF, Konal M. Enhanced Container Ship Hatch Cover using Topology Optimization Method for Lightweight Design and Optimal Costs. Journal of Offshore Mechanics and Arctic Engineering 2025:1–16.
  • [5] Wang G, Feng Y, Dai Y, Chen Z, Wu Y. Optimization design of a windshield for a 12,000 TEU container ship based on a support vector regression surrogate model. Ocean Engineering 2024;313:119405.
  • [6] Liu Z, Cho S, Takezawa A, Zhang X, Kitamura M. Two-stage layout–size optimization method for prow stiffeners. International Journal of Naval Architecture and Ocean Engineering 2019;11:44–51.
  • [7] Putra GL, Kitamura M, Takezawa A. Structural optimization of stiffener layout for stiffened plate using hybrid GA. International Journal of Naval Architecture and Ocean Engineering 2019;11:809–18.
  • [8] Um T-S, Roh M-I. Optimal dimension design of a hatch cover for lightening a bulk carrier. International Journal of Naval Architecture and Ocean Engineering 2015;7:270–87.
  • [9] Kendibilir A, Kefal A. Enhanced ship cross-section design methodology using peridynamics topology optimization. Ocean Engineering 2023;286:115531.
  • [10] Wang G, Feng Y, Dai Y, Chen Z, Wu Y. Optimization design of a windshield for a 12,000 TEU container ship based on a support vector regression surrogate model. Ocean Engineering 2024;313. https://doi.org/10.1016/j.oceaneng.2024.119405.
  • [11] Sekulski Z. Multi-objective topology and size optimization of high-speed vehicle-passenger catamaran structure by genetic algorithm. Marine Structures 2010;23:405–33.
  • [12] Niu L, Xiao L. Optimization of topology and energy management in fuel cell cruise ship hybrid power systems. Intelligent Marine Technology and Systems 2024;2. https://doi.org/10.1007/s44295-024-00026-3.
  • [13] Islam MS, Paul SC. Topology optimization of an oil tanker bulkhead subjected to hydrostatic loads. Journal of Naval Architecture and Marine Engineering 2021;18:207–15.
  • [14] Bekler YB. Shape optimization application for weight reduction of a container wagon 2013.
  • [15] Kilicaslan A. The conceptual design of a high container weight reduced by topology optimisation method. 2018.
  • [16] Bal MK. Designing universal yoke structure of suspension and release system with topology optimization for fighter aircrafts 2020.
  • [17] Yilmaz AF, Günay M. Investigation of mechanical strength and distortion in submerged arc welding of AH36 ship steel plate. Journal of Ship Production and Design 2017;33:335–41.
  • [18] Guzelbulut C, Badalotti T, Suzuki K. Optimization techniques for the design of crescent-shaped hard sails for wind-assisted ship propulsion. Ocean Engineering 2024;312:119142.
  • [19] Mirzendehdel AM, Suresh K. Support structure constrained topology optimization for additive manufacturing. Computer-Aided Design 2016;81:1–13.
  • [20] Mehmet ÖZKAL F. TOPOLOJİ ENİYİLEMESİ VE ÇUBUK BENZEŞİMİ YÖNTEMLERİ KULLANILARAK BETONARME YAPI ELEMANLARINDA EN UYGUN DONATI DÜZENİNİN BELİRLENMESİ VE DENEYSEL GERÇEKLEMESİ. 2012.
  • [21] Ertas AH, Alkan V, Yilmaz AF. Finite element simulation of a mercantile vessel shipboard under working conditions. Procedia Eng 2014;69:1001–7.

Topoloji Optimizasyonu ile Gemi Çift Dip Konstrüksiyonu Dolu Döşek Tasarım İyileştirilmesi

Year 2025, Volume: 13 Issue: 2, 763 - 776, 30.06.2025
https://doi.org/10.29109/gujsc.1663786

Abstract

Bu çalışma, ticari gemi inşasında kullanılan dolu döşek elemanlarının topoloji optimizasyonu yoluyla yapısal ağırlıklarının azaltılmasını amaçlamaktadır. Gemilerde yaygın olarak kullanılan çelik levhalar, çeşitli açıklıklar eklenerek hafifletilmektedir. Ancak mevcut açıklık tasarımlarının çoğu deneyime dayalı olup, yapısal verimlilik açısından optimizasyona açıktır. Bu araştırmada, enine sistemli bir geminin çift dip yapısındaki dolu döşek elemanları için farklı genişlik (1,8–4,2 m) ve kalınlıklarda (10–40 mm) standart dışı açıklık tasarımları önerilmiştir. Autodesk Fusion 360 yazılımının şekil optimizasyonu modülü kullanılarak, yüksekliği 1200 mm olan levha modellerine bölgesel dip yükleri uygulanmıştır. Tüm analizlerde yapısal ağırlığın %50 azaltılması hedeflenmiştir. Optimizasyon sonuçları, her genişlik ve kalınlık için optimum açıklık sayısını ve geometrik düzenleri belirlemiştir. Ayrıca, optimize edilen tasarımlar statik gerilim analizleri ile değerlendirilmiş, maksimum gerilme bölgeleri ve büyüklükleri analiz edilmiştir. Sonuçlar, döşek genişliğinin artışıyla açıklık sayısının arttığını, kalınlığın artışıyla ise açıklık kenarlarında daha geniş köşe yarıçaplarının oluştuğunu göstermiştir. Tüm optimize edilmiş modellerde, maksimum gerilme değerleri izin verilen 150 MPa sınırının altında kalmıştır. Özellikle 3,6 m genişlik, 20 mm kalınlık ve %50 malzeme korunumuna sahip modelin en uygun çözümü sunduğu belirlenmiştir. Bu çalışma, gemi çift dip yapılarında dolu döşeklerin topoloji optimizasyonu ile hafifletilmesine yönelik önemli bulgular sunmaktadır.

References

  • [1] Ehrlenspiel K, Kiewert A, Lindemann U, Hundal MS, editors. Factors that influence Manufacturing Costs and Procedures for Cost Reduction. Cost-Efficient Design, Berlin, Heidelberg: Springer Berlin Heidelberg; 2007, p. 143–384. https://doi.org/10.1007/978-3-540-34648-7_7.
  • [2] Novikov A V, Barmin AA, Mudrova AA, Yasinskaya Y V. System analysis of the features of using information models in shipbuilding. J Phys Conf Ser 2019;1333:032090. https://doi.org/10.1088/1742-6596/1333/3/032090.
  • [3] Kim H, Lee S-S, Park JH, Lee J-G. A model for a simulation-based shipbuilding system in a shipyard manufacturing process. Int J Comput Integr Manuf 2005;18:427–41. https://doi.org/10.1080/09511920500064789.
  • [4] Yilmaz AF, Konal M. Enhanced Container Ship Hatch Cover using Topology Optimization Method for Lightweight Design and Optimal Costs. Journal of Offshore Mechanics and Arctic Engineering 2025:1–16.
  • [5] Wang G, Feng Y, Dai Y, Chen Z, Wu Y. Optimization design of a windshield for a 12,000 TEU container ship based on a support vector regression surrogate model. Ocean Engineering 2024;313:119405.
  • [6] Liu Z, Cho S, Takezawa A, Zhang X, Kitamura M. Two-stage layout–size optimization method for prow stiffeners. International Journal of Naval Architecture and Ocean Engineering 2019;11:44–51.
  • [7] Putra GL, Kitamura M, Takezawa A. Structural optimization of stiffener layout for stiffened plate using hybrid GA. International Journal of Naval Architecture and Ocean Engineering 2019;11:809–18.
  • [8] Um T-S, Roh M-I. Optimal dimension design of a hatch cover for lightening a bulk carrier. International Journal of Naval Architecture and Ocean Engineering 2015;7:270–87.
  • [9] Kendibilir A, Kefal A. Enhanced ship cross-section design methodology using peridynamics topology optimization. Ocean Engineering 2023;286:115531.
  • [10] Wang G, Feng Y, Dai Y, Chen Z, Wu Y. Optimization design of a windshield for a 12,000 TEU container ship based on a support vector regression surrogate model. Ocean Engineering 2024;313. https://doi.org/10.1016/j.oceaneng.2024.119405.
  • [11] Sekulski Z. Multi-objective topology and size optimization of high-speed vehicle-passenger catamaran structure by genetic algorithm. Marine Structures 2010;23:405–33.
  • [12] Niu L, Xiao L. Optimization of topology and energy management in fuel cell cruise ship hybrid power systems. Intelligent Marine Technology and Systems 2024;2. https://doi.org/10.1007/s44295-024-00026-3.
  • [13] Islam MS, Paul SC. Topology optimization of an oil tanker bulkhead subjected to hydrostatic loads. Journal of Naval Architecture and Marine Engineering 2021;18:207–15.
  • [14] Bekler YB. Shape optimization application for weight reduction of a container wagon 2013.
  • [15] Kilicaslan A. The conceptual design of a high container weight reduced by topology optimisation method. 2018.
  • [16] Bal MK. Designing universal yoke structure of suspension and release system with topology optimization for fighter aircrafts 2020.
  • [17] Yilmaz AF, Günay M. Investigation of mechanical strength and distortion in submerged arc welding of AH36 ship steel plate. Journal of Ship Production and Design 2017;33:335–41.
  • [18] Guzelbulut C, Badalotti T, Suzuki K. Optimization techniques for the design of crescent-shaped hard sails for wind-assisted ship propulsion. Ocean Engineering 2024;312:119142.
  • [19] Mirzendehdel AM, Suresh K. Support structure constrained topology optimization for additive manufacturing. Computer-Aided Design 2016;81:1–13.
  • [20] Mehmet ÖZKAL F. TOPOLOJİ ENİYİLEMESİ VE ÇUBUK BENZEŞİMİ YÖNTEMLERİ KULLANILARAK BETONARME YAPI ELEMANLARINDA EN UYGUN DONATI DÜZENİNİN BELİRLENMESİ VE DENEYSEL GERÇEKLEMESİ. 2012.
  • [21] Ertas AH, Alkan V, Yilmaz AF. Finite element simulation of a mercantile vessel shipboard under working conditions. Procedia Eng 2014;69:1001–7.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Optimization Techniques in Mechanical Engineering
Journal Section Tasarım ve Teknoloji
Authors

Ahmet Fatih Yılmaz 0000-0001-5784-0121

Early Pub Date June 26, 2025
Publication Date June 30, 2025
Submission Date March 23, 2025
Acceptance Date June 20, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Yılmaz, A. F. (2025). Topoloji Optimizasyonu ile Gemi Çift Dip Konstrüksiyonu Dolu Döşek Tasarım İyileştirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(2), 763-776. https://doi.org/10.29109/gujsc.1663786

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526