Research Article
BibTex RIS Cite

The Effect of Rheum ribes Extract Origin of Elazig Province on Ventilator-Associated Pneumonia and Antioxidant Capacity

Year 2024, Volume: 12 Issue: 1, 25 - 39, 25.03.2024
https://doi.org/10.29109/gujsc.1301083

Abstract

Ventilatör ilişkili pnömoni (VİP), yoğun bakım ünitesindeki (YBÜ) en önemli enfeksiyonlardan biridir ve hastalarda mortalite ve morbidite artışına katkıda bulunur. Bu çalışmada Rheum ribes (Elazığ/Türkiye) ekstraktının VİP hastalarından elde edilen bakteri izolatları üzerinde antimikrobiyal etkilerini (agar kuyu difüzyonu, MİK testi) ve antioksidan kapasitesini (DPPH, FRAP ve metal şelatlama) değerlendirmeyi amaçladık. Analiz sonucunda R.ribes'in en yüksek antimikrobiyal etkisi 19.32 mm zon çapı ile Klebsiella pneumonia-2 (K.pneumonia) ve 18.45 mm zon çapı ile K.pneumonia-21 izolatında gözlendi. Bunların dışında Staph. aureus., K. pneumonia-20, K. pneumonia-16 ve Pseudomonas aeruginosa (P. aeruginosa) sırasıyla 18.32, 15.14, 14.56 ve 13.54 mm zon çapları ile tespit edildi. R. ribes ekstraktı K.pneumonia izolatları 16 ve 20'de 0,5 ppm'de %98,3 ve %94,88 inhibitör etki gösterirken, en yüksek izolatlar 21 ve 2'de %100 inhibitör etki göstermiştir. S. aureus %50,36 gibi yüksek bir inhibisyon etkisi göstermiştir. 0,25 ppm'de ve P. aeruginosa 0,5 ppm'de %82,82 oranında izole edilmiştir. Ayrıca DPPH, FRAP ve metal şelasyon analizleri güçlü bir antioksidan etki göstermiştir. Ribes ekstraktının antioksidan etkileri için demir iyonlarının (Fe2+) DPPH inhibisyon etkisi, FRAP analizi ve şelatlama aktivitesi değerleri sırasıyla %17.22, %1.18 ve %2.14 olarak belirlendi. Sonuç olarak, R. ribes ekstraktının patojenik bakteriler üzerindeki güçlü etkisi ve antioksidan kapasitesi belirlenmiş olup, in vivo ve klinik çalışmalarla faydalı özellikleri derinleştirilebilir.

Thanks

We would like to thank the residents of Saman Village, Aricak, Elazig, for their help in R.ribes samples collection and imaging studies.

References

  • [1] Togacar M., Ergen B., Sertkaya M.E., Detection of pneumonia with deep learning model, Firat University Journal of Engineering Science, 31 (2019) 223–230.
  • [2] Adnan M., Ali S., Sheikh K., Amber R., Review on antibacterial activity of Himalayan medicinal plants traditionally used to treat pneumonia and tuberculosis, Journal of Pharmacy and Pharmacology, 71 (2019) 1599–1625.
  • [3] Cillóniz C., Torres A., Niederman M.S., Management of pneumonia in critically ill patients, BMJ, 375 (2021).
  • [4] Pettigrew M.M., Tanner W., Harris A.D., The lung microbiome and pneumonia, The Journal of Infectious Diseases, 223 (2021) 241–245.
  • [5] Spalding M.C., Cripps M.W., Minshall C.T., ventilator-associated pneumonia: new definitions, Critical Care Clinics, 33 (2017) 277–292.
  • [6] Oliveira J., Zagalo C., Cavaco-Silva P., Prevention of ventilator-associated pneumonia, Revista Portuguesa de Pneumologia, 20 (2014) 152–61.
  • [7] Papazian L., Klompas M., Luyt C.E., Ventilator-associated pneumonia in adults: a narrative review, Intensive Care Medicine, 46 (2020) 888–906.
  • [8] Shahzad F., Anderson D., Najafzadeh M., The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection, Nutrients, 12, (2020) 2573; doi:10.3390/nu12092573.
  • [9] Singh A.K., Sharma N., Ghosh M., Park Y.H., Jeong D.K. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells, Critical Reviews in Food Science and Nutrition, 57 (2017) 3449-3463.
  • [10] Ozdemir O., Tuzcu Z. Resveratrol attenuates diabetic nephropathy by modulating organic transporters and heat shock proteins in streptozotocin-induced diabetic rats, Turkish Journal of Nature and Science, 4 (2015) 36–43.
  • [11] Kirmit A., Takim K., Durmus E., Guler E.M., Yenigun V.B., Bulut H., Kocyigit A., The anti-cancer effect of Rheum ribes L.’s ethanol extracts on malign melanoma cells, Journal of Health Sciences and Medicine, 3 (2020) 148 – 152.
  • [12] Raad K., Javed A. Analysis of Chemical Composition by GC/MS and Assessment of Anticancer Activity of Rhubarb (Rheum ribes Linn.) Stalks, Applied Biological Research, 24 (2022) 413–419.
  • [13] Demiray H., Estep A.S., Tabanca N., Becnel J.J., Demirci B. Chemical Constituents from Rheum ribes Shoots and its Insecticidal Activity Against Aedes aegypti, Revista Brasileira de Farmacognosia, 32 (2022) 81–85.
  • [14] Cinar-Ayan I., Cetinkaya S., Dursun H.G., Suntar I., Bioactive compounds of Rheum ribes L. and its anticancerogenic effect via induction of apoptosis and miR-200 family expression in human colorectal cancer cells, Nutrition and Cancer, 73 (2021) 1228–1243.
  • [15] Amiri N., Shafaghat A., Salimi F., Screening of the essential oil, hexane extract, chemical composition, antioxidant activity, and antimicrobial acitivity of the flower Rheum ribes L. from Iran, Journal of Essential Oil Bearing Plants, 18 (2015) 1108–1115.
  • [16] Kalkan S., Otag M.R., Engin M.S., Physicochemical and bioactive properties of edible methylcellulose films containing Rheum ribes L. Extract, Food Chemistry, 307 (2020) 125524.
  • [17] Ozdemir O., Kaya M.O., Gok M., Yilmaz N., Tuzcu Z., Chloroform-Methanol extraction antimicrobial and antioxidative potential of Rheum ribes originating from Elazig/Aricak Province, Journal of the Institute of Science and Technology, 13 (2023) 830–838.
  • [18] Ozdemir O., Yilmaz N., Gok M., Kaya M.O., Determination of antimicrobial and antioxidant activities of Lavandula angustifolia volatile oil, Turkish Journal of Agriculture Research, 9 (2022) 265–273.
  • [19] Tufekci A.R., Aksit H., Gul F., Demirtas I., Determination of phenolic profile of Cirsium arvense (L.) scop. subsp. vestitum (Wimmer et Grab.) petrak plant, Eurasian Journal of Biological and Chemical Sciences, 1 (2018) 33–36.
  • [20] File T.M., Recommendations for treatment of hospital-acquired and ventilator-associated pneumonia: review of recent international guidelines, Clinical Infectious Diseases, 51 (2010) 42–47.
  • [21] Kalanuria A.A., Ziai W., Zai W., Mirski M. Ventilator-associated pneumonia in the ICU, Crit Care, 18 (2014) 208.
  • [22] Bauer A.W., Kirby W.M.M., Sherris J.C., Turck M., Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45 (1966) 493-496.
  • [23] Ericsson H.M., Sherris J.C., Antibiotic sensitivity testing. report of an international collaborative study, Acta Pathologica et Microbiologica Scandinavica, Section B, 217 (1966) 90.
  • [24] Ryan K.J., Schoenknecht F.D., Kirby W.M.M., Disc sensitivity testing, Hospital Practice, 5 (1970) 91- 100.
  • [25] Anonymous, Performance Standards for Antimicrobial Disk Susceptibility Tests, 9th Ed. Clinical and Laboratory Standards Institute, Approved Standard M2-A9, CLSI, Wayne, Pa, 2006.
  • [26] Stella L.R., Marín D., Metodologías para evaluar in vitro la actividad antibacteriana de Compuestos de or ígen vegetal, Scientia et technical Universidad Tecnológica de Pereira, 42 (2009) 263–268.
  • [27] Anonymous, Disk Diffusion Supplemental Tables, 4th Ed. Clinical and Laboratory Standards Institute, M100-S17 (M2), CLSI, Wayne Pa, 2007.
  • [28] Lalitha M.K., Manual on antimicrobial susceptibility testing. (under the auspices of ındian association of medical microbiologists). Washington, dc: American Society for microbiology, 2004.
  • [29] Blois M.S., Antioxidant determinations by the use of a stable free radical, Nature, 26 (1958) 1199–2000.
  • [30] Dinis T.C.P., Maderia V.M.C., Almeida L.M., Action of phenolic derivates (Acetaminophen, Salicylate and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers, Archives of Biochemistry and Biophysics, 315 (1994) 161–169.
  • [31] Benzie I.F.F, Strain J.J., The ferric reducing ability of plasma as a measure of antioxidant power: the FRAP assay, Analytical Biochemistry, 239 (1996) 70–76.
  • [32] Prior R.L., Wu X., Schaich K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements, Journal Agriculture Food Chemistry, 53 (2005) 4290–4302.
  • [33] Slinkard K., Singleton V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods, American Society for Enology and Viticulture, 28 (1977) 49–55.
  • [34] Park Y-S., Jung S-T., Kang S-G. Heo B.G., Arancibia-Avila P., Toledo P., Drzewiecki J., Namiesnik J., Gorinstein S. Antioxidants and proteins in ethylene-treated kiwifruits, Food Chemistry, 107 (2008) 640–648.
  • [35] Modi A.R., Kovacs C.S., Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention, Cleveland Clinic Journal of Medicine, 87 (2020) 633–639.
  • [36] Salehi M., Jafari S., Ghafouri L., Malekafzali Ardakani H., Abdollahi A., Beigmohammadi M.T., Dehghan Manshadi S.A., Feizabadi MM, Ramezani M, Abtahi H, Seifi A. Ventilator-associated pneumonia: multidrug resistant acinetobacter vs. extended spectrum beta lactamase-producing Klebsiella. Journal of Infection in Developing Countries, 14 (2020) 660–663.
  • [37] Mojtahedzadeh M., Mashhadi Akbar, Boojar M., Habtemariam S., Nabavi S.M., Najafi A., Ghahremanian A., Baktash M., Aghaabdollahian S., Sureda A., Bagheri M., Systematic review: effectiveness of herbal oral care products on ventilator-associated pneumonia, Phytotherapy Research, 35 (2021) 3665–3672.
  • [38] Yildirim M., Degirmenci U., Akkapulu M., Comelekoglu U., Balli E., Metin Ozcan T., Berkoz M., Yalin A.E., Yalin S., The effect of Rheum ribes L. on oxidative stress in diabetic rats, Journal of Basic and Clinical Physiology and Pharmacology, (2020).
  • [39] Wang Y., Yu F., Li A., He Z., Qu C., He C., Ma X., Zhan H., The progress and prospect of natural components in rhubarb (Rheum ribes L.) in the treatment of renal fibrosis, Frontiers in Pharmacology, 13 (2022) 919967.
  • [40] Keshavarzi Z., Shakeri F., Maghool F., Jamialahmadi T., Johnston T.P., Sahebkar A, A review on the phytochemistry, pharmacology, and therapeutic effects of Rheum ribes, Advances in Experimental Medicine and Biology, 1328 (2021) 447–461.
  • [41] Shamansoori M.T., Karimi E., Oskoueian E., Rheum ribes extract-loaded nanoliposome as a novel phytogenic antibiotic alternative in mice challenged by Escherichia coli (O157:H7), Biotechnology and Applied Biochemistry, 69 (2022) 2540–2549.
  • [42] Meydan I., Burhan H., Gur T., Seckin H., Tanhaei B., Sen F., Characterization of Rheum ribes with ZnO nanoparticle and its antidiabetic, antibacterial, DNA damage prevention and lipid peroxidation prevention activity of in vitro, Environmental Research, 204 (2022) 112363.
  • [43] Alaadin A.M., Al-Khateeb E.H., Jager A.K. Antibacterial Activity of the Iraqi Rheum ribes Root, Pharmaceutical Biology, 45 (2007) 688–690.
  • [44] Wijesinghe G.K., Feiria S.B., Maia F.C., Oliveira T.R., Joia F., Barbosa J.P., Boni G.C., Höfling J.F., In-vitro antibacterial and antibiofilm activity of Cinnamomum verum leaf oil against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae, Anais da Academia Brasileira de Ciencias, 93 (2021) e20201507.
  • [45] Magrys A., Onder A., Tchórzewska D., Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics, Archives of Microbiology, 203 (2021) 2257–2268.
  • [46] de Giffoni de Carvalho J.T., da Silva Baldivia D., Leite D.F., de Araújo L.C.A., de Toledo Espindola P.P., Antunes K.A., Rocha P.S., de Picoli Souza K., Dos Santos E.L., Medicinal plants from Brazilian cerrado: antioxidant and anticancer potential and protection against chemotherapy toxicity, Oxidative Medicine Cellular Longevity, 25 (2019) 3685264.
  • [47] Xu D.P., Li Y., Meng X., Zhou T., Zhou Y., Zheng J., Zhang J.J., Li H.B., Natural antioxidants in foods and medicinal plants: extraction, assessment and resources, International Journal of Molecular Sciences, 18 (2017) 96.
  • [48] Yagmuroglu O., Determination of total antioxidant capacities as ascorbic acid equivalent of tea extract samples from different brands using digital ımage-based colorimetric detection method, Gazi University Journal of Science Part C: Design and technology, 10 (2022) 682–690.
  • [49] Gecibesler I.H., Disli F., Bayindir S., Toprak M., Tufekci A.R., Sahin Yaglioglu A., Altun M., Kocak A., Demirtas I., Adem S., The isolation of secondary metabolites from Rheum ribes L. and the synthesis of new semi-synthetic anthraquinones: Isolation, synthesis and biological activity, Food Chemistry, 342 (2021) 128378.
  • [50] Bati B., Celik I., Turan A., Eray N., Alkan E.E., Zirek A.K, Effect of isgin (Rheum ribes L.) on biochemical parameters, antioxidant activity and DNA damage in rats with obesity induced with high-calorie diet, Archive Physiology Biochemistry, 129 (2023) 298–306.
  • [51] Achakzai J.K., Anwar Panezai M., Kakar M.A., Kakar A.M., Kakar S., Khan J., Khan N.Y., Khilji I., Tareen A.K., In vitro anticancer MCF-7, anti-Inflammatory, and brine shrimp lethality assay (BSLA) and GC-MS analysis of whole plant butanol fraction of Rheum ribes (WBFRR), BioMed Research International, 2019 (2019) 3264846.
Year 2024, Volume: 12 Issue: 1, 25 - 39, 25.03.2024
https://doi.org/10.29109/gujsc.1301083

Abstract

References

  • [1] Togacar M., Ergen B., Sertkaya M.E., Detection of pneumonia with deep learning model, Firat University Journal of Engineering Science, 31 (2019) 223–230.
  • [2] Adnan M., Ali S., Sheikh K., Amber R., Review on antibacterial activity of Himalayan medicinal plants traditionally used to treat pneumonia and tuberculosis, Journal of Pharmacy and Pharmacology, 71 (2019) 1599–1625.
  • [3] Cillóniz C., Torres A., Niederman M.S., Management of pneumonia in critically ill patients, BMJ, 375 (2021).
  • [4] Pettigrew M.M., Tanner W., Harris A.D., The lung microbiome and pneumonia, The Journal of Infectious Diseases, 223 (2021) 241–245.
  • [5] Spalding M.C., Cripps M.W., Minshall C.T., ventilator-associated pneumonia: new definitions, Critical Care Clinics, 33 (2017) 277–292.
  • [6] Oliveira J., Zagalo C., Cavaco-Silva P., Prevention of ventilator-associated pneumonia, Revista Portuguesa de Pneumologia, 20 (2014) 152–61.
  • [7] Papazian L., Klompas M., Luyt C.E., Ventilator-associated pneumonia in adults: a narrative review, Intensive Care Medicine, 46 (2020) 888–906.
  • [8] Shahzad F., Anderson D., Najafzadeh M., The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection, Nutrients, 12, (2020) 2573; doi:10.3390/nu12092573.
  • [9] Singh A.K., Sharma N., Ghosh M., Park Y.H., Jeong D.K. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells, Critical Reviews in Food Science and Nutrition, 57 (2017) 3449-3463.
  • [10] Ozdemir O., Tuzcu Z. Resveratrol attenuates diabetic nephropathy by modulating organic transporters and heat shock proteins in streptozotocin-induced diabetic rats, Turkish Journal of Nature and Science, 4 (2015) 36–43.
  • [11] Kirmit A., Takim K., Durmus E., Guler E.M., Yenigun V.B., Bulut H., Kocyigit A., The anti-cancer effect of Rheum ribes L.’s ethanol extracts on malign melanoma cells, Journal of Health Sciences and Medicine, 3 (2020) 148 – 152.
  • [12] Raad K., Javed A. Analysis of Chemical Composition by GC/MS and Assessment of Anticancer Activity of Rhubarb (Rheum ribes Linn.) Stalks, Applied Biological Research, 24 (2022) 413–419.
  • [13] Demiray H., Estep A.S., Tabanca N., Becnel J.J., Demirci B. Chemical Constituents from Rheum ribes Shoots and its Insecticidal Activity Against Aedes aegypti, Revista Brasileira de Farmacognosia, 32 (2022) 81–85.
  • [14] Cinar-Ayan I., Cetinkaya S., Dursun H.G., Suntar I., Bioactive compounds of Rheum ribes L. and its anticancerogenic effect via induction of apoptosis and miR-200 family expression in human colorectal cancer cells, Nutrition and Cancer, 73 (2021) 1228–1243.
  • [15] Amiri N., Shafaghat A., Salimi F., Screening of the essential oil, hexane extract, chemical composition, antioxidant activity, and antimicrobial acitivity of the flower Rheum ribes L. from Iran, Journal of Essential Oil Bearing Plants, 18 (2015) 1108–1115.
  • [16] Kalkan S., Otag M.R., Engin M.S., Physicochemical and bioactive properties of edible methylcellulose films containing Rheum ribes L. Extract, Food Chemistry, 307 (2020) 125524.
  • [17] Ozdemir O., Kaya M.O., Gok M., Yilmaz N., Tuzcu Z., Chloroform-Methanol extraction antimicrobial and antioxidative potential of Rheum ribes originating from Elazig/Aricak Province, Journal of the Institute of Science and Technology, 13 (2023) 830–838.
  • [18] Ozdemir O., Yilmaz N., Gok M., Kaya M.O., Determination of antimicrobial and antioxidant activities of Lavandula angustifolia volatile oil, Turkish Journal of Agriculture Research, 9 (2022) 265–273.
  • [19] Tufekci A.R., Aksit H., Gul F., Demirtas I., Determination of phenolic profile of Cirsium arvense (L.) scop. subsp. vestitum (Wimmer et Grab.) petrak plant, Eurasian Journal of Biological and Chemical Sciences, 1 (2018) 33–36.
  • [20] File T.M., Recommendations for treatment of hospital-acquired and ventilator-associated pneumonia: review of recent international guidelines, Clinical Infectious Diseases, 51 (2010) 42–47.
  • [21] Kalanuria A.A., Ziai W., Zai W., Mirski M. Ventilator-associated pneumonia in the ICU, Crit Care, 18 (2014) 208.
  • [22] Bauer A.W., Kirby W.M.M., Sherris J.C., Turck M., Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45 (1966) 493-496.
  • [23] Ericsson H.M., Sherris J.C., Antibiotic sensitivity testing. report of an international collaborative study, Acta Pathologica et Microbiologica Scandinavica, Section B, 217 (1966) 90.
  • [24] Ryan K.J., Schoenknecht F.D., Kirby W.M.M., Disc sensitivity testing, Hospital Practice, 5 (1970) 91- 100.
  • [25] Anonymous, Performance Standards for Antimicrobial Disk Susceptibility Tests, 9th Ed. Clinical and Laboratory Standards Institute, Approved Standard M2-A9, CLSI, Wayne, Pa, 2006.
  • [26] Stella L.R., Marín D., Metodologías para evaluar in vitro la actividad antibacteriana de Compuestos de or ígen vegetal, Scientia et technical Universidad Tecnológica de Pereira, 42 (2009) 263–268.
  • [27] Anonymous, Disk Diffusion Supplemental Tables, 4th Ed. Clinical and Laboratory Standards Institute, M100-S17 (M2), CLSI, Wayne Pa, 2007.
  • [28] Lalitha M.K., Manual on antimicrobial susceptibility testing. (under the auspices of ındian association of medical microbiologists). Washington, dc: American Society for microbiology, 2004.
  • [29] Blois M.S., Antioxidant determinations by the use of a stable free radical, Nature, 26 (1958) 1199–2000.
  • [30] Dinis T.C.P., Maderia V.M.C., Almeida L.M., Action of phenolic derivates (Acetaminophen, Salicylate and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers, Archives of Biochemistry and Biophysics, 315 (1994) 161–169.
  • [31] Benzie I.F.F, Strain J.J., The ferric reducing ability of plasma as a measure of antioxidant power: the FRAP assay, Analytical Biochemistry, 239 (1996) 70–76.
  • [32] Prior R.L., Wu X., Schaich K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements, Journal Agriculture Food Chemistry, 53 (2005) 4290–4302.
  • [33] Slinkard K., Singleton V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods, American Society for Enology and Viticulture, 28 (1977) 49–55.
  • [34] Park Y-S., Jung S-T., Kang S-G. Heo B.G., Arancibia-Avila P., Toledo P., Drzewiecki J., Namiesnik J., Gorinstein S. Antioxidants and proteins in ethylene-treated kiwifruits, Food Chemistry, 107 (2008) 640–648.
  • [35] Modi A.R., Kovacs C.S., Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention, Cleveland Clinic Journal of Medicine, 87 (2020) 633–639.
  • [36] Salehi M., Jafari S., Ghafouri L., Malekafzali Ardakani H., Abdollahi A., Beigmohammadi M.T., Dehghan Manshadi S.A., Feizabadi MM, Ramezani M, Abtahi H, Seifi A. Ventilator-associated pneumonia: multidrug resistant acinetobacter vs. extended spectrum beta lactamase-producing Klebsiella. Journal of Infection in Developing Countries, 14 (2020) 660–663.
  • [37] Mojtahedzadeh M., Mashhadi Akbar, Boojar M., Habtemariam S., Nabavi S.M., Najafi A., Ghahremanian A., Baktash M., Aghaabdollahian S., Sureda A., Bagheri M., Systematic review: effectiveness of herbal oral care products on ventilator-associated pneumonia, Phytotherapy Research, 35 (2021) 3665–3672.
  • [38] Yildirim M., Degirmenci U., Akkapulu M., Comelekoglu U., Balli E., Metin Ozcan T., Berkoz M., Yalin A.E., Yalin S., The effect of Rheum ribes L. on oxidative stress in diabetic rats, Journal of Basic and Clinical Physiology and Pharmacology, (2020).
  • [39] Wang Y., Yu F., Li A., He Z., Qu C., He C., Ma X., Zhan H., The progress and prospect of natural components in rhubarb (Rheum ribes L.) in the treatment of renal fibrosis, Frontiers in Pharmacology, 13 (2022) 919967.
  • [40] Keshavarzi Z., Shakeri F., Maghool F., Jamialahmadi T., Johnston T.P., Sahebkar A, A review on the phytochemistry, pharmacology, and therapeutic effects of Rheum ribes, Advances in Experimental Medicine and Biology, 1328 (2021) 447–461.
  • [41] Shamansoori M.T., Karimi E., Oskoueian E., Rheum ribes extract-loaded nanoliposome as a novel phytogenic antibiotic alternative in mice challenged by Escherichia coli (O157:H7), Biotechnology and Applied Biochemistry, 69 (2022) 2540–2549.
  • [42] Meydan I., Burhan H., Gur T., Seckin H., Tanhaei B., Sen F., Characterization of Rheum ribes with ZnO nanoparticle and its antidiabetic, antibacterial, DNA damage prevention and lipid peroxidation prevention activity of in vitro, Environmental Research, 204 (2022) 112363.
  • [43] Alaadin A.M., Al-Khateeb E.H., Jager A.K. Antibacterial Activity of the Iraqi Rheum ribes Root, Pharmaceutical Biology, 45 (2007) 688–690.
  • [44] Wijesinghe G.K., Feiria S.B., Maia F.C., Oliveira T.R., Joia F., Barbosa J.P., Boni G.C., Höfling J.F., In-vitro antibacterial and antibiofilm activity of Cinnamomum verum leaf oil against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae, Anais da Academia Brasileira de Ciencias, 93 (2021) e20201507.
  • [45] Magrys A., Onder A., Tchórzewska D., Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics, Archives of Microbiology, 203 (2021) 2257–2268.
  • [46] de Giffoni de Carvalho J.T., da Silva Baldivia D., Leite D.F., de Araújo L.C.A., de Toledo Espindola P.P., Antunes K.A., Rocha P.S., de Picoli Souza K., Dos Santos E.L., Medicinal plants from Brazilian cerrado: antioxidant and anticancer potential and protection against chemotherapy toxicity, Oxidative Medicine Cellular Longevity, 25 (2019) 3685264.
  • [47] Xu D.P., Li Y., Meng X., Zhou T., Zhou Y., Zheng J., Zhang J.J., Li H.B., Natural antioxidants in foods and medicinal plants: extraction, assessment and resources, International Journal of Molecular Sciences, 18 (2017) 96.
  • [48] Yagmuroglu O., Determination of total antioxidant capacities as ascorbic acid equivalent of tea extract samples from different brands using digital ımage-based colorimetric detection method, Gazi University Journal of Science Part C: Design and technology, 10 (2022) 682–690.
  • [49] Gecibesler I.H., Disli F., Bayindir S., Toprak M., Tufekci A.R., Sahin Yaglioglu A., Altun M., Kocak A., Demirtas I., Adem S., The isolation of secondary metabolites from Rheum ribes L. and the synthesis of new semi-synthetic anthraquinones: Isolation, synthesis and biological activity, Food Chemistry, 342 (2021) 128378.
  • [50] Bati B., Celik I., Turan A., Eray N., Alkan E.E., Zirek A.K, Effect of isgin (Rheum ribes L.) on biochemical parameters, antioxidant activity and DNA damage in rats with obesity induced with high-calorie diet, Archive Physiology Biochemistry, 129 (2023) 298–306.
  • [51] Achakzai J.K., Anwar Panezai M., Kakar M.A., Kakar A.M., Kakar S., Khan J., Khan N.Y., Khilji I., Tareen A.K., In vitro anticancer MCF-7, anti-Inflammatory, and brine shrimp lethality assay (BSLA) and GC-MS analysis of whole plant butanol fraction of Rheum ribes (WBFRR), BioMed Research International, 2019 (2019) 3264846.
There are 51 citations in total.

Details

Primary Language English
Journal Section Tasarım ve Teknoloji
Authors

Oğuzhan Özdemir 0000-0002-9588-3285

Nurten Yılmaz 0000-0003-3867-509X

Mustafa Oğuzhan Kaya 0000-0002-8592-1567

Early Pub Date December 26, 2023
Publication Date March 25, 2024
Submission Date May 23, 2023
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Özdemir, O., Yılmaz, N., & Kaya, M. O. (2024). The Effect of Rheum ribes Extract Origin of Elazig Province on Ventilator-Associated Pneumonia and Antioxidant Capacity. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(1), 25-39. https://doi.org/10.29109/gujsc.1301083

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526