Research Article
BibTex RIS Cite

Sürdürülebilir Yongalevha Üretiminde Alkali Ön İşlem Uygulanmış Muz Atığının Kullanımı

Year 2024, Volume: 12 Issue: 1, 347 - 353, 25.03.2024
https://doi.org/10.29109/gujsc.1451944

Abstract

Muz bitkisi (Musa acuminata) dünyanın bir çok bölgesinde ve ülkesinde üretimi ve ticareti yapılmaktadır. Bununla birlikte, her yıl muz bitkisinin yaprak ve saplarından oluşan önemli miktarda atık, hasat sonrasında çevreye atılmaktadır. Bu çalışma, bu konuyu vurgulamayı ve artan hammadde talebine yanıt olarak alternatif bir çözüm önermeyi amaçlamaktadır. Bu amaçla, atık halde bulunan muz yaprakları ve gövdelerinden elde edilen yongalara, %1, %3 ve %5 derişimlerde NaOH çözeltileri kullanılarak alkali ön işlemi uygulanmış ve ardından levha üretimi gerçekleştirilmiştir. Üretilen levhaların su alma (SA) ve kalınlığına şişme (KŞ) değerleri alkali işlem derişimi arttıkça yükselmiştir. TS-EN 312 (2012) standardında beklenen mekanik özelliklere %1’lik NaOH işlemi grup örneklerinde ulaşılmıştır. Derişimin daha fazla artması, eğilmede elastikiyet modülü (EM), eğilme direnci (ED) ve yüzeye dik çekme direnci (YDÇD) değerlerinin düşmesine neden olmuştur. Levhaların yüzey özellikleri testlerinde ise, alkali derişiminin artması yüzey pürüzlülüğünü azaltmış, temas açısını düşürmüştür. Bu çalışmanın sonuçları genel olarak, muz atıklarının alternatif bir kaynak olarak kullanılmasının uygulanabilirliğini ortaya koymaktadır.

References

  • [1] Bektaş, İ., Güler, C., Kalaycıoğlu, H., Ayçiçeği (Helianthus annuus L.) saplarından üre-formaldehit tutkalı ile yongalevha üretimi. Kahramanmaraş Sütçü İmam Üniversitesi Fen ve Mühendislik Dergisi, 5(2) (2002) 49-56.
  • [2] Yaşar, S., Güller, B., Göktürk Baydar, N., Farklı asma (Vitis vinifera L.) çeşitlerinin budama atıklarındaki lignin, karbonhidrat miktarları ve lif özellikleri. Bartın Orman Fakültesi Dergisi. 11(16) (2009) 71-79.
  • [3] Yasar, S., Guntekin, E., Cengiz, M., Tanriverdi, H., The correlation of chemical characteristics and UF-Resin ratios to physical and mechanical properties of particleboard manufactured from vine prunings. Scientific Research and Essays, 5(8) (2010) 737-741.
  • [4] Haitao X. B., Huijuan Zhanga, B., Ya Ouyanga, B., Li Liua, B., Yu Wanga, B., Two-dimensional hierarchical porous carbon composites derived from corn stalks for electrode materials with high performance. Electrochimica Acta 214 (2016) 119–128.
  • [5] Tutus, A., Çiçekler, M., Evaluation of common wheat stubbles (Triticum aestivum L.) for pulp and paper production. Drvna industrija, 67(3) (2016) 271-279.
  • [6] Comlekcioglu, N., Tutus, A., Cicekler, M., Canak, A., Zengin, G., Investigation of Isatis tinctoria and Isatis buschiana stalks as raw materials for pulp and paper production. Drvna Industrija, 67(3) (2016) 249-255.
  • [7] Çiçekler, M., Özdemir, A., Tutuş, A., Characterization of pulp and paper properties produced from okra (Abelmoschus esculentus) stalks. Drvna Industrija, 73(4) (2022) 423-430.
  • [8] Tiryaki, S., Aydin, A., Adanur, H., Hammadde tedarik sorunlarının Türkiye mobilya üretimi açısından değerlendirilmesi ve bir projeksiyon çalışması. Ormancılık Araştırma Dergisi, 9(Özel Sayı) (2022) 247-253.
  • [9] Yildirim, İ., Emiroğlu, E., Türkiye ve dünyada orman ürünleri sanayi sektörüne ait bazı ürünlerin karşılaştırmalı analizleri. Ormancılık Araştırma Dergisi, 9(Özel Sayı), (2022) 155-164.
  • [10] Pędzik, M., Tomczak, K., Janiszewska-Latterini, D., Tomczak, A., Rogoziński, T., Management of forest residues as a raw material for the production of particleboards. Forests, 13(11), (2022) 19-33.
  • [11] Şahin, P., (2013). Orman ürünleri sanayi sektörünün veri zarflama analizi yardımıyla etkinlik ölçümü. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • [12] Ayrılmış, N., Göksel, U., Bağlı, E., Özkan, İ., Ahşap sandviç kompozit levhaların yapısı ve mobilya endüstrisinde kullanımı. Kastamonu University Journal of Forestry Faculty, 15(1) (2015) 37-48.
  • [13] Asdrubali, F., Ferracuti, B., Lombardi, L., Guattari, C., Evangelisti, L., Grazieschi, G., A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Building and Environment, 114 (2017) 307-332.
  • [14] Lee, S. H., Lum, W. C., Boon, J. G., Kristak, L., Antov, P., Pędzik, M., ... & Pizzi, A., Particleboard from agricultural biomass and recycled wood waste: A review. Journal of Materials Research and Technology, 20 (2020) 4630-4658.
  • [15] Ndazi, B. S., Nyahumwa, C. W., Tesha, J., Chemical and thermal stability of rice husks against alkali treatment. BioResources, 3(4) (2008) 1267-1277.
  • [16] Islam, M. S., Hamdan, S., Jusoh, I., Rahman, M. R., Ahmed, A. S., The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Materials & Design, 33 (2018) 419-424.
  • [17] Beram, A., Yaşar, S., NaOH ile modifiye edilmiş kızılçam (Pinus brutia Ten.) yongalarının levha üretimindeki performansı. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2) (2018) 187-196.
  • [18] Jonoobi, M., Ghorbani, M., Azarhazin, A., Zarea Hosseinabadi, H., Effect of surface modification of fibers on the medium density fiberboard properties. European Journal of Wood and Wood Products, 7 (2018) 517-524.
  • [19] Beram, A., Yasar, S., Performance of brutian pine (Pinus brutia Ten.) fibers modified with low concentration NaOH solutions in fiberboard production. Fresenius Environmental Bulletin, 29(1) (2020) 70-78.
  • [20] Mohammed, M., Rahman, R., Mohammed, A. M., Adam, T., Betar, B. O., Osman, A. F., Dahham, O. S., Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement. Polymer Testing, (2022) 107707.
  • [21] FAO, (2018). Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/
  • [22] da Silva, W. R., Vale, L. S. R., Pereira, D., Desempenho de cultivares de bananeira sob as condições edafoclimáticas de Ceres-GO. Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences, 62 (2019).
  • [23] Mohiuddin, A. K. M., Saha, M. K., Hossian, M. S., Ferdoushi, A., Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: a review. The Agriculturists, 12(1) (2014) 148-158.
  • [24] Cecci, R. R. R., Passos, A. A., de Aguiar Neto, T. C., Silva, L. A., Banana pseudostem fibers characterization and comparison with reported data on jute and sisal fibers. Sn applied sciences, 2(1) (2020) 20.
  • [25] Padam, B.S., Tin, H.S., Chye, F.Y., Abdullah, M.I., Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol 51 (2014) 3527–3545
  • [26] Akinyemi, B. A., Dai, C., Development of banana fibers and wood bottom ash modified cement mortars. Construction and Building Materials, 241 (2020) 118041.
  • [27] Akinyemi, B. A., Okonkwo, C. E., Alhassan, E. A., Ajiboye, M. Durability and strength properties of particle boards from polystyrene–wood wastes. Journal of Material Cycles and Waste Management, 21 (2019) 1541-1549.
  • [28] Balda, S., Sharma, A., Capalash, N., Sharma, P., Banana fibre: a natural and sustainable bioresource for eco-friendly applications. Clean Technologies and Environmental Policy, 23 (2021) 1389-1401.
  • [29] TS-EN 312, (2012). Particleboards-specifications-part 2: Requirements for general purpose boards for use in dry conditions, Institute of Turkish Standards, Ankara, Turkey.
  • [30] TS EN 310, (1999). Wood based panels determination of modulus elasticity in bending and of bending strength. Institute of Turkish Standards, Ankara, Turkey.
  • [31] TS-EN 317, (1999). Particleboards and fiberboards determination of swelling in thickness after immersion.
  • [32] TS-EN 319, (1999). Particleboards and fibreboards-determination of tensile strength perpendicular to the plane of the board, Institute of Turkish Standards, Ankara, Turkey.
  • [33] DIN- 4768, (1990). Determination of values of surface roughness parameters, Ra, Rz, Rmax, using electrical contact (stylus) instruments. Concepts and Measuring Conditions. Deutsches Institut für Norming: Berlin, Germany.
  • [34] GB/T 30693, (2014). Measurement of water-contact angle of plastic films. Guangzhou City Quality Supervision and Testing Academy: Guangzhou, China.
  • [35] Beram, A., Enhancing surface characteristics and combustion behavior of black poplar wood through varied impregnation techniques. Applied Sciences, 13(20) (2023) 11482.
  • [36] Fengel, D., Wegener, G., (1984). Wood chemistry, ultrastructure, Reactions. Walter de Gruyter, Berlin.
  • [37] Joseleau, J. P., Imai, T., Kuroda, K., Ruel, K., Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta, 219 (2004) 338-345.
  • [38] Yasar, S., İçel, B., Alkali modification of cotton (Gossypium hirsutum L.) stalks and its effect on properties of produced particleboards. BioResources, 11(3) (2016) 7191-7204.
  • [39] Mukherjee, A., Ganguly, P. K., Sur, D., Structural mechanics of jute: The effects of hemicellulose or lignin removal,” The Journal of The Textile Institute 84(3) (1993) 348-353. DOI: 10.1080/00405009308658967.
  • [40] Khedari, J., Nankongnab, N., Hirunlabh, J., Teekasap, S., New low-cost insulation particleboards from mixture of durian peel and coconut coir. Building and environment, 39(1) (2004) 59-65.
  • [41] Hiziroglu, S., Suzuki, S., Evaluation of surface roughness of commercially manufactured particleboard and medium density fiberboard in Japan. Journal of Materials Processing Technology, 184(1-3) (2007) 436-440.
  • [42] Aydin, I., Colakoglu, G., Effects of surface inactivation, high temperature drying and preservative treatment on surface roughness and colour of alder and beech wood. Applied Surface Science, 252(2) (2005) 430-440.
  • [43] Yaşar, S., Aytaç, U. Z., Beram, A., Isıl işlem görmüş kızılçam (Pinus brutia Ten.) yongalarından üretilen levhaların bazı özellikleri. Bilge International Journal of Science and Technology Research, 4(1) (2020) 14-20.
  • [44] Žigon, J., Kovač, J., Petrič, M., The influence of mechanical, physical and chemical pre-treatment processes of wood surface on the relationships of wood with a waterborne opaque coating. Progress in Organic Coatings, 162 (2022) 106574.
  • [45] Li, X., Tabil, L. G., Panigrahi, S., 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment, 15, 25-33.
  • [46] Wang, B., Panigrahi, S., Tabil, L., Crerar, W., Pre-treatment of Flax Fibers for use in Rotationally Molded Biocomposites. Journal of Reinforced Plastics and Composites, 26(5) (2007) 447–463. doi:10.1177/0731684406072526
  • [47] Jannah, M., Mariatti, M., Abu Bakar, A., Abdul Khalil, H. P. S., Effect of chemical surface modifications on the properties of woven banana-reinforced unsaturated polyester composites. Journal of Reinforced Plastics and Composites, 28(12) (2009) 1519-1532.
  • [48] Zheng, Y., Pan, Z., Zhang, R., Jenkins, B. M., Blunk, S., Particleboard quality characteristics of saline jose tall wheatgrass and chemical treatment effect. Bioresource technology, 98(6) (2007) 1304-1310.
  • [49] Juliana, A. H., Paridah, M. T., Evaluation of basic properties of kenaf (Hibiscus cannabinus L.) particles as raw material for particleboard. In 18th International Conference on Composite Materials, 36 (2011) 1-6.
  • [50] Liu, B., Wang, F., Zhu, X., Jiao, A., Enhanced surface wettability of rice straw with alkaline pretreatment. The Open Materials Science Journal, 5(1) (2011) 109-117.
  • [51] Chen, H., Zhang, W., Wang, X., Wang, H., Wu, Y., Zhong, T., Fei, B., Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. Journal of Wood Science, 64 (2018) 398-405. https://doi.org/10.1007/s10086-018-1713-0

Utilizing Alkali Pre- Treated Banana Waste in Sustainable Particleboard Manufacturing

Year 2024, Volume: 12 Issue: 1, 347 - 353, 25.03.2024
https://doi.org/10.29109/gujsc.1451944

Abstract

Banana (Musa acuminata) cultivation and trade are widespread across various regions and countries globally. Nonetheless, substantial quantities of waste, primarily comprising leaves and stems of the banana plant, are annually disposed of into the environment post-harvest. This study aims to highlight this issue and propose an alternative solution in response to the escalating demand for raw materials. To this end, alkaline pretreatment was administered to particles derived from banana waste leaves and stems using NaOH solutions at concentrations of 1%, 3%, and 5%, followed by board production. Results indicate that water absorption (WA) and thickness swelling (TS) values of the produced boards increased with alkaline treatment. However, the mechanical properties stipulated in the TS-EN 312 (2012) standard were satisfactorily achieved with 1% NaOH treatment, while higher concentrations adversely affected internal bond strength (IB), modulus of elasticity (MOE), and modulus of rupture (MOR). In the surface properties tests of the boards, increasing the alkali concentration decreased values of the surface roughness and the contact angle. Overall, the findings suggest the viability of utilizing banana waste as an alternative resource.

References

  • [1] Bektaş, İ., Güler, C., Kalaycıoğlu, H., Ayçiçeği (Helianthus annuus L.) saplarından üre-formaldehit tutkalı ile yongalevha üretimi. Kahramanmaraş Sütçü İmam Üniversitesi Fen ve Mühendislik Dergisi, 5(2) (2002) 49-56.
  • [2] Yaşar, S., Güller, B., Göktürk Baydar, N., Farklı asma (Vitis vinifera L.) çeşitlerinin budama atıklarındaki lignin, karbonhidrat miktarları ve lif özellikleri. Bartın Orman Fakültesi Dergisi. 11(16) (2009) 71-79.
  • [3] Yasar, S., Guntekin, E., Cengiz, M., Tanriverdi, H., The correlation of chemical characteristics and UF-Resin ratios to physical and mechanical properties of particleboard manufactured from vine prunings. Scientific Research and Essays, 5(8) (2010) 737-741.
  • [4] Haitao X. B., Huijuan Zhanga, B., Ya Ouyanga, B., Li Liua, B., Yu Wanga, B., Two-dimensional hierarchical porous carbon composites derived from corn stalks for electrode materials with high performance. Electrochimica Acta 214 (2016) 119–128.
  • [5] Tutus, A., Çiçekler, M., Evaluation of common wheat stubbles (Triticum aestivum L.) for pulp and paper production. Drvna industrija, 67(3) (2016) 271-279.
  • [6] Comlekcioglu, N., Tutus, A., Cicekler, M., Canak, A., Zengin, G., Investigation of Isatis tinctoria and Isatis buschiana stalks as raw materials for pulp and paper production. Drvna Industrija, 67(3) (2016) 249-255.
  • [7] Çiçekler, M., Özdemir, A., Tutuş, A., Characterization of pulp and paper properties produced from okra (Abelmoschus esculentus) stalks. Drvna Industrija, 73(4) (2022) 423-430.
  • [8] Tiryaki, S., Aydin, A., Adanur, H., Hammadde tedarik sorunlarının Türkiye mobilya üretimi açısından değerlendirilmesi ve bir projeksiyon çalışması. Ormancılık Araştırma Dergisi, 9(Özel Sayı) (2022) 247-253.
  • [9] Yildirim, İ., Emiroğlu, E., Türkiye ve dünyada orman ürünleri sanayi sektörüne ait bazı ürünlerin karşılaştırmalı analizleri. Ormancılık Araştırma Dergisi, 9(Özel Sayı), (2022) 155-164.
  • [10] Pędzik, M., Tomczak, K., Janiszewska-Latterini, D., Tomczak, A., Rogoziński, T., Management of forest residues as a raw material for the production of particleboards. Forests, 13(11), (2022) 19-33.
  • [11] Şahin, P., (2013). Orman ürünleri sanayi sektörünün veri zarflama analizi yardımıyla etkinlik ölçümü. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • [12] Ayrılmış, N., Göksel, U., Bağlı, E., Özkan, İ., Ahşap sandviç kompozit levhaların yapısı ve mobilya endüstrisinde kullanımı. Kastamonu University Journal of Forestry Faculty, 15(1) (2015) 37-48.
  • [13] Asdrubali, F., Ferracuti, B., Lombardi, L., Guattari, C., Evangelisti, L., Grazieschi, G., A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Building and Environment, 114 (2017) 307-332.
  • [14] Lee, S. H., Lum, W. C., Boon, J. G., Kristak, L., Antov, P., Pędzik, M., ... & Pizzi, A., Particleboard from agricultural biomass and recycled wood waste: A review. Journal of Materials Research and Technology, 20 (2020) 4630-4658.
  • [15] Ndazi, B. S., Nyahumwa, C. W., Tesha, J., Chemical and thermal stability of rice husks against alkali treatment. BioResources, 3(4) (2008) 1267-1277.
  • [16] Islam, M. S., Hamdan, S., Jusoh, I., Rahman, M. R., Ahmed, A. S., The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Materials & Design, 33 (2018) 419-424.
  • [17] Beram, A., Yaşar, S., NaOH ile modifiye edilmiş kızılçam (Pinus brutia Ten.) yongalarının levha üretimindeki performansı. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2) (2018) 187-196.
  • [18] Jonoobi, M., Ghorbani, M., Azarhazin, A., Zarea Hosseinabadi, H., Effect of surface modification of fibers on the medium density fiberboard properties. European Journal of Wood and Wood Products, 7 (2018) 517-524.
  • [19] Beram, A., Yasar, S., Performance of brutian pine (Pinus brutia Ten.) fibers modified with low concentration NaOH solutions in fiberboard production. Fresenius Environmental Bulletin, 29(1) (2020) 70-78.
  • [20] Mohammed, M., Rahman, R., Mohammed, A. M., Adam, T., Betar, B. O., Osman, A. F., Dahham, O. S., Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement. Polymer Testing, (2022) 107707.
  • [21] FAO, (2018). Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/
  • [22] da Silva, W. R., Vale, L. S. R., Pereira, D., Desempenho de cultivares de bananeira sob as condições edafoclimáticas de Ceres-GO. Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences, 62 (2019).
  • [23] Mohiuddin, A. K. M., Saha, M. K., Hossian, M. S., Ferdoushi, A., Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: a review. The Agriculturists, 12(1) (2014) 148-158.
  • [24] Cecci, R. R. R., Passos, A. A., de Aguiar Neto, T. C., Silva, L. A., Banana pseudostem fibers characterization and comparison with reported data on jute and sisal fibers. Sn applied sciences, 2(1) (2020) 20.
  • [25] Padam, B.S., Tin, H.S., Chye, F.Y., Abdullah, M.I., Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol 51 (2014) 3527–3545
  • [26] Akinyemi, B. A., Dai, C., Development of banana fibers and wood bottom ash modified cement mortars. Construction and Building Materials, 241 (2020) 118041.
  • [27] Akinyemi, B. A., Okonkwo, C. E., Alhassan, E. A., Ajiboye, M. Durability and strength properties of particle boards from polystyrene–wood wastes. Journal of Material Cycles and Waste Management, 21 (2019) 1541-1549.
  • [28] Balda, S., Sharma, A., Capalash, N., Sharma, P., Banana fibre: a natural and sustainable bioresource for eco-friendly applications. Clean Technologies and Environmental Policy, 23 (2021) 1389-1401.
  • [29] TS-EN 312, (2012). Particleboards-specifications-part 2: Requirements for general purpose boards for use in dry conditions, Institute of Turkish Standards, Ankara, Turkey.
  • [30] TS EN 310, (1999). Wood based panels determination of modulus elasticity in bending and of bending strength. Institute of Turkish Standards, Ankara, Turkey.
  • [31] TS-EN 317, (1999). Particleboards and fiberboards determination of swelling in thickness after immersion.
  • [32] TS-EN 319, (1999). Particleboards and fibreboards-determination of tensile strength perpendicular to the plane of the board, Institute of Turkish Standards, Ankara, Turkey.
  • [33] DIN- 4768, (1990). Determination of values of surface roughness parameters, Ra, Rz, Rmax, using electrical contact (stylus) instruments. Concepts and Measuring Conditions. Deutsches Institut für Norming: Berlin, Germany.
  • [34] GB/T 30693, (2014). Measurement of water-contact angle of plastic films. Guangzhou City Quality Supervision and Testing Academy: Guangzhou, China.
  • [35] Beram, A., Enhancing surface characteristics and combustion behavior of black poplar wood through varied impregnation techniques. Applied Sciences, 13(20) (2023) 11482.
  • [36] Fengel, D., Wegener, G., (1984). Wood chemistry, ultrastructure, Reactions. Walter de Gruyter, Berlin.
  • [37] Joseleau, J. P., Imai, T., Kuroda, K., Ruel, K., Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta, 219 (2004) 338-345.
  • [38] Yasar, S., İçel, B., Alkali modification of cotton (Gossypium hirsutum L.) stalks and its effect on properties of produced particleboards. BioResources, 11(3) (2016) 7191-7204.
  • [39] Mukherjee, A., Ganguly, P. K., Sur, D., Structural mechanics of jute: The effects of hemicellulose or lignin removal,” The Journal of The Textile Institute 84(3) (1993) 348-353. DOI: 10.1080/00405009308658967.
  • [40] Khedari, J., Nankongnab, N., Hirunlabh, J., Teekasap, S., New low-cost insulation particleboards from mixture of durian peel and coconut coir. Building and environment, 39(1) (2004) 59-65.
  • [41] Hiziroglu, S., Suzuki, S., Evaluation of surface roughness of commercially manufactured particleboard and medium density fiberboard in Japan. Journal of Materials Processing Technology, 184(1-3) (2007) 436-440.
  • [42] Aydin, I., Colakoglu, G., Effects of surface inactivation, high temperature drying and preservative treatment on surface roughness and colour of alder and beech wood. Applied Surface Science, 252(2) (2005) 430-440.
  • [43] Yaşar, S., Aytaç, U. Z., Beram, A., Isıl işlem görmüş kızılçam (Pinus brutia Ten.) yongalarından üretilen levhaların bazı özellikleri. Bilge International Journal of Science and Technology Research, 4(1) (2020) 14-20.
  • [44] Žigon, J., Kovač, J., Petrič, M., The influence of mechanical, physical and chemical pre-treatment processes of wood surface on the relationships of wood with a waterborne opaque coating. Progress in Organic Coatings, 162 (2022) 106574.
  • [45] Li, X., Tabil, L. G., Panigrahi, S., 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment, 15, 25-33.
  • [46] Wang, B., Panigrahi, S., Tabil, L., Crerar, W., Pre-treatment of Flax Fibers for use in Rotationally Molded Biocomposites. Journal of Reinforced Plastics and Composites, 26(5) (2007) 447–463. doi:10.1177/0731684406072526
  • [47] Jannah, M., Mariatti, M., Abu Bakar, A., Abdul Khalil, H. P. S., Effect of chemical surface modifications on the properties of woven banana-reinforced unsaturated polyester composites. Journal of Reinforced Plastics and Composites, 28(12) (2009) 1519-1532.
  • [48] Zheng, Y., Pan, Z., Zhang, R., Jenkins, B. M., Blunk, S., Particleboard quality characteristics of saline jose tall wheatgrass and chemical treatment effect. Bioresource technology, 98(6) (2007) 1304-1310.
  • [49] Juliana, A. H., Paridah, M. T., Evaluation of basic properties of kenaf (Hibiscus cannabinus L.) particles as raw material for particleboard. In 18th International Conference on Composite Materials, 36 (2011) 1-6.
  • [50] Liu, B., Wang, F., Zhu, X., Jiao, A., Enhanced surface wettability of rice straw with alkaline pretreatment. The Open Materials Science Journal, 5(1) (2011) 109-117.
  • [51] Chen, H., Zhang, W., Wang, X., Wang, H., Wu, Y., Zhong, T., Fei, B., Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. Journal of Wood Science, 64 (2018) 398-405. https://doi.org/10.1007/s10086-018-1713-0
There are 51 citations in total.

Details

Primary Language English
Subjects Wood Physics and Mechanics
Journal Section Tasarım ve Teknoloji
Authors

Abdullah Beram 0000-0001-6532-8718

Early Pub Date March 22, 2024
Publication Date March 25, 2024
Submission Date March 13, 2024
Acceptance Date March 16, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Beram, A. (2024). Utilizing Alkali Pre- Treated Banana Waste in Sustainable Particleboard Manufacturing. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(1), 347-353. https://doi.org/10.29109/gujsc.1451944

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526