Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 3, 428 - 439, 30.09.2024
https://doi.org/10.29109/gujsc.1475819

Abstract

References

  • [1] C.-M. Lai, Y.-H. Cheng, M.-H. Hsieh, and Y.-C. Lin, “Development of a Bidirectional DC/DC Converter With Dual-Battery Energy Storage for Hybrid Electric Vehicle System,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1036–1052, Feb. 2018, doi: 10.1109/TVT.2017.2763157.
  • [2] T. H. Pham, J. T. B. A. Kessels, P. P. J. Van Den Bosch, and R. G. M. Huisman, “Analytical Solution to Energy Management Guaranteeing Battery Life for Hybrid Trucks,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 7956–7971, Oct. 2016, doi: 10.1109/TVT.2015.2480745.
  • [3] Y. Zhang, X.-F. Cheng, C. Yin, and S. Cheng, “A Soft-Switching Bidirectional DC–DC Converter for the Battery Super-Capacitor Hybrid Energy Storage System,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 7856–7865, Oct. 2018, doi: 10.1109/TIE.2018.2798608.
  • [4] A. Emadi, S. S. Williamson, and A. Khaligh, “Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 567–577, May 2006, doi: 10.1109/TPEL.2006.872378.
  • [5] S. Arandhakar, N. Jayaram, Y. R. Shankar, Gaurav, P. S. V. Kishore, and S. Halder, “Emerging Intelligent Bidirectional Charging Strategy Based on Recurrent Neural Network Accosting EMI and Temperature Effects for Electric Vehicle,” IEEE Access, vol. 10, pp. 121741–121761, 2022, doi: 10.1109/ACCESS.2022.3223443.
  • [6] H. Bahrami, S. Farhangi, H. Iman-Eini, and E. Adib, “A New Interleaved Coupled-Inductor Nonisolated Soft-Switching Bidirectional DC–DC Converter With High Voltage Gain Ratio,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5529–5538, Jul. 2018, doi: 10.1109/TIE.2017.2782221.
  • [7] K. Chao and C. Huang, “Bidirectional DC–DC soft‐switching converter for stand‐alone photovoltaic power generation systems,” IET Power Electronics, vol. 7, no. 6, pp. 1557–1565, Jun. 2014, doi: 10.1049/iet-pel.2013.0335.
  • [8] N. A. Dung, H.-J. Chiu, J.-Y. Lin, Y.-C. Hsieh, H.-T. Chen, and B.-X. Zeng, “Novel Modulation of Isolated Bidirectional DC–DC Converter for Energy Storage Systems,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1266–1275, Feb. 2019, doi: 10.1109/TPEL.2018.2828035.
  • [9] H. Liu, L. Wang, Y. Ji, and F. Li, “A Novel Reversal Coupled Inductor High-Conversion-Ratio Bidirectional DC–DC Converter,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4968–4979, Jun. 2018, doi: 10.1109/TPEL.2017.2725358.
  • [10] K. Ramasamy, K. Chandramohan, and D. Ghanta, “Energy Management in Plugin Hybrid Electric Vehicles with Hybrid Energy Storage System Using Hybrid Approach,” Energy Tech, vol. 10, no. 10, p. 2200355, Oct. 2022, doi: 10.1002/ente.202200355.
  • [11] A. Boyar, E. Kabalci, and Y. Kabalci, “Model Predictive Torque Control-Based Induction Motor Drive with Remote Control and Monitoring Interface for Electric Vehicles,” Electric Power Components and Systems, vol. 51, no. 18, pp. 2159–2170, Nov. 2023, doi: 10.1080/15325008.2023.2211581.
  • [12] E. Irmak, E. Kabalci, and Y. Kabalci, “Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity,” Energies, vol. 16, no. 12, p. 4590, Jun. 2023, doi: 10.3390/en16124590.
  • [13] K. Gokce and A. Ozdemir, “A rule based power split strategy for battery/ultracapacitor energy storage systems in hybrid electric vehicles,” Int. J. Electrochem. Sci, vol. 11, no. 2, pp. 1228–1246, 2016.
  • [14] E. Schaltz, A. Khaligh, and P. O. Rasmussen, “Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 3882–3891, Oct. 2009, doi: 10.1109/TVT.2009.2027909.
  • [15] Q. Zhang, W. Deng, S. Zhang, and J. Wu, “A Rule Based Energy Management System of Experimental Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles,” Journal of Control Science and Engineering, vol. 2016, pp. 1–17, 2016, doi: 10.1155/2016/6828269.
  • [16] R. Carter, A. Cruden, and P. J. Hall, “Optimizing for Efficiency or Battery Life in a Battery/Supercapacitor Electric Vehicle,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1526–1533, May 2012, doi: 10.1109/TVT.2012.2188551.
  • [17] M. Pipicelli, B. Sessa, F. De Nola, A. Gimelli, and G. Di Blasio, “Assessment of Battery–Supercapacitor Topologies of an Electric Vehicle under Real Driving Conditions,” Vehicles, vol. 5, no. 2, pp. 424–445, Apr. 2023, doi: 10.3390/vehicles5020024.
  • [18] L. Sun, K. Feng, C. Chapman, and N. Zhang, “An Adaptive Power-Split Strategy for Battery–Supercapacitor Powertrain—Design, Simulation, and Experiment,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9364–9375, Dec. 2017, doi: 10.1109/TPEL.2017.2653842.
  • [19] Q. Zhang and G. Li, “Experimental Study on a Semi-Active Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicle Application,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 1014–1021, Jan. 2020, doi: 10.1109/TPEL.2019.2912425.
  • [20] H. Yu, D. Tarsitano, X. Hu, and F. Cheli, “Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system,” Energy, vol. 112, pp. 322–331, Oct. 2016, doi: 10.1016/j.energy.2016.06.084.
  • [21] M.-F. Hsieh, P.-H. Chen, F.-S. Pai, and R.-Y. Weng, “Development of Supercapacitor-Aided Hybrid Energy Storage System to Enhance Battery Life Cycle of Electric Vehicles,” Sustainability, vol. 13, no. 14, p. 7682, Jul. 2021, doi: 10.3390/su13147682.
  • [22] T. Zhu, R. Lot, R. G. A. Wills, and X. Yan, “Sizing a battery-supercapacitor energy storage system with battery degradation consideration for high-performance electric vehicles,” Energy, vol. 208, p. 118336, Oct. 2020, doi: 10.1016/j.energy.2020.118336.
  • [23] J. Shi, B. Xu, Y. Shen, and J. Wu, “Energy management strategy for battery/supercapacitor hybrid electric city bus based on driving pattern recognition,” Energy, vol. 243, p. 122752, Mar. 2022, doi: 10.1016/j.energy.2021.122752.
  • [24] G. Xiao, Q. Chen, P. Xiao, L. Zhang, and Q. Rong, “Multiobjective Optimization for a Li-Ion Battery and Supercapacitor Hybrid Energy Storage Electric Vehicle,” Energies, vol. 15, no. 8, p. 2821, Apr. 2022, doi: 10.3390/en15082821.
  • [25] F. Liu, C. Wang, and Y. Luo, “Parameter Matching Method of a Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicles,” World Electric Vehicle Journal, vol. 12, no. 4, p. 253, Dec. 2021, doi: 10.3390/wevj12040253.
  • [26] J. P. F. Trovao, V. D. N. Santos, C. H. Antunes, P. G. Pereirinha, and H. M. Jorge, “A Real-Time Energy Management Architecture for Multisource Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3223–3233, May 2015, doi: 10.1109/TIE.2014.2376883.
  • [27] F. Machado, J. P. F. Trovao, and C. H. Antunes, “Effectiveness of Supercapacitors in Pure Electric Vehicles Using a Hybrid Metaheuristic Approach,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 29–36, Jan. 2016, doi: 10.1109/TVT.2015.2390919.
  • [28] S. Lu, K. A. Corzine, and M. Ferdowsi, “A New Battery/Ultracapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516–1523, Jul. 2007, doi: 10.1109/TVT.2007.896971.
  • [29] D. M. Bu and C. Zhu, “Research on the Optimum Continuous Mileages under the Pure Electric Mode of Plug-In Hybrid Electric Vehicles,” Applied Mechanics and Materials, vol. 672–674, pp. 1179–1182, Oct. 2014, doi: 10.4028/www.scientific.net/AMM.672-674.1179.
  • [30] J. P. Trovão and C. H. Antunes, “A comparative analysis of meta-heuristic methods for power management of a dual energy storage system for electric vehicles,” Energy Conversion and Management, vol. 95, pp. 281–296, May 2015, doi: 10.1016/j.enconman.2015.02.030.
  • [31] F. Cheruiyot and D. Segera, “A Master-Slave Salp Swarm Algorithm Optimizer for Hybrid Energy Storage System Control Strategy in Electric Vehicles,” Journal of Energy, vol. 2022, pp. 1–20, Sep. 2022, doi: 10.1155/2022/1648433.
  • [32] K. Ye, P. Li, and H. Li, “Optimization of Hybrid Energy Storage System Control Strategy for Pure Electric Vehicle Based on Typical Driving Cycle,” Mathematical Problems in Engineering, vol. 2020, pp. 1–12, Jun. 2020, doi: 10.1155/2020/1365195.
  • [33] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.advengsoft.2013.12.007.

Grey Wolf Optimization Algorithm-Based Hybrid Energy Storage System Controller Design for Electric Vehicles

Year 2024, Volume: 12 Issue: 3, 428 - 439, 30.09.2024
https://doi.org/10.29109/gujsc.1475819

Abstract

Electric vehicles (EVs) present several benefits over conventional internal combustion engine vehicles. They emit zero tailpipe emissions, thereby aiding in the reduction of air pollution and the mitigation of climate change. In addition, EVs tend to have lower operating expenses due to cheaper electricity compared to gasoline or diesel. They also provide a smoother and quieter driving experience. Furthermore, EVs help promote energy independence by decreasing dependence on fossil fuels. Overall, they represent a cleaner, more sustainable transportation option for the future. However, EVs encounter some important constraints such as inefficiency of energy consumption management, charging time, and battery range problems. To address these challenges, hybrid energy storage systems (HESSs) offer a solution by combining different energy storage technologies. These systems can improve energy efficiency, reduce charging times, and extend the driving range of EVs, making them more practical and appealing to consumers. In this study, a new controller design is realized using the grey wolf optimization (GWO) algorithm, and the energy consumption demands of EV HESS are optimized with the designed system. The performance results of the proposed system are compared with other energy management systems in the literature, and it is concluded from this study that the proposed system is much superior to previous methods and typically reduces energy consumption by 12.88%.

References

  • [1] C.-M. Lai, Y.-H. Cheng, M.-H. Hsieh, and Y.-C. Lin, “Development of a Bidirectional DC/DC Converter With Dual-Battery Energy Storage for Hybrid Electric Vehicle System,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1036–1052, Feb. 2018, doi: 10.1109/TVT.2017.2763157.
  • [2] T. H. Pham, J. T. B. A. Kessels, P. P. J. Van Den Bosch, and R. G. M. Huisman, “Analytical Solution to Energy Management Guaranteeing Battery Life for Hybrid Trucks,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 7956–7971, Oct. 2016, doi: 10.1109/TVT.2015.2480745.
  • [3] Y. Zhang, X.-F. Cheng, C. Yin, and S. Cheng, “A Soft-Switching Bidirectional DC–DC Converter for the Battery Super-Capacitor Hybrid Energy Storage System,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 7856–7865, Oct. 2018, doi: 10.1109/TIE.2018.2798608.
  • [4] A. Emadi, S. S. Williamson, and A. Khaligh, “Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 567–577, May 2006, doi: 10.1109/TPEL.2006.872378.
  • [5] S. Arandhakar, N. Jayaram, Y. R. Shankar, Gaurav, P. S. V. Kishore, and S. Halder, “Emerging Intelligent Bidirectional Charging Strategy Based on Recurrent Neural Network Accosting EMI and Temperature Effects for Electric Vehicle,” IEEE Access, vol. 10, pp. 121741–121761, 2022, doi: 10.1109/ACCESS.2022.3223443.
  • [6] H. Bahrami, S. Farhangi, H. Iman-Eini, and E. Adib, “A New Interleaved Coupled-Inductor Nonisolated Soft-Switching Bidirectional DC–DC Converter With High Voltage Gain Ratio,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5529–5538, Jul. 2018, doi: 10.1109/TIE.2017.2782221.
  • [7] K. Chao and C. Huang, “Bidirectional DC–DC soft‐switching converter for stand‐alone photovoltaic power generation systems,” IET Power Electronics, vol. 7, no. 6, pp. 1557–1565, Jun. 2014, doi: 10.1049/iet-pel.2013.0335.
  • [8] N. A. Dung, H.-J. Chiu, J.-Y. Lin, Y.-C. Hsieh, H.-T. Chen, and B.-X. Zeng, “Novel Modulation of Isolated Bidirectional DC–DC Converter for Energy Storage Systems,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1266–1275, Feb. 2019, doi: 10.1109/TPEL.2018.2828035.
  • [9] H. Liu, L. Wang, Y. Ji, and F. Li, “A Novel Reversal Coupled Inductor High-Conversion-Ratio Bidirectional DC–DC Converter,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4968–4979, Jun. 2018, doi: 10.1109/TPEL.2017.2725358.
  • [10] K. Ramasamy, K. Chandramohan, and D. Ghanta, “Energy Management in Plugin Hybrid Electric Vehicles with Hybrid Energy Storage System Using Hybrid Approach,” Energy Tech, vol. 10, no. 10, p. 2200355, Oct. 2022, doi: 10.1002/ente.202200355.
  • [11] A. Boyar, E. Kabalci, and Y. Kabalci, “Model Predictive Torque Control-Based Induction Motor Drive with Remote Control and Monitoring Interface for Electric Vehicles,” Electric Power Components and Systems, vol. 51, no. 18, pp. 2159–2170, Nov. 2023, doi: 10.1080/15325008.2023.2211581.
  • [12] E. Irmak, E. Kabalci, and Y. Kabalci, “Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity,” Energies, vol. 16, no. 12, p. 4590, Jun. 2023, doi: 10.3390/en16124590.
  • [13] K. Gokce and A. Ozdemir, “A rule based power split strategy for battery/ultracapacitor energy storage systems in hybrid electric vehicles,” Int. J. Electrochem. Sci, vol. 11, no. 2, pp. 1228–1246, 2016.
  • [14] E. Schaltz, A. Khaligh, and P. O. Rasmussen, “Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 3882–3891, Oct. 2009, doi: 10.1109/TVT.2009.2027909.
  • [15] Q. Zhang, W. Deng, S. Zhang, and J. Wu, “A Rule Based Energy Management System of Experimental Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles,” Journal of Control Science and Engineering, vol. 2016, pp. 1–17, 2016, doi: 10.1155/2016/6828269.
  • [16] R. Carter, A. Cruden, and P. J. Hall, “Optimizing for Efficiency or Battery Life in a Battery/Supercapacitor Electric Vehicle,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1526–1533, May 2012, doi: 10.1109/TVT.2012.2188551.
  • [17] M. Pipicelli, B. Sessa, F. De Nola, A. Gimelli, and G. Di Blasio, “Assessment of Battery–Supercapacitor Topologies of an Electric Vehicle under Real Driving Conditions,” Vehicles, vol. 5, no. 2, pp. 424–445, Apr. 2023, doi: 10.3390/vehicles5020024.
  • [18] L. Sun, K. Feng, C. Chapman, and N. Zhang, “An Adaptive Power-Split Strategy for Battery–Supercapacitor Powertrain—Design, Simulation, and Experiment,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9364–9375, Dec. 2017, doi: 10.1109/TPEL.2017.2653842.
  • [19] Q. Zhang and G. Li, “Experimental Study on a Semi-Active Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicle Application,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 1014–1021, Jan. 2020, doi: 10.1109/TPEL.2019.2912425.
  • [20] H. Yu, D. Tarsitano, X. Hu, and F. Cheli, “Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system,” Energy, vol. 112, pp. 322–331, Oct. 2016, doi: 10.1016/j.energy.2016.06.084.
  • [21] M.-F. Hsieh, P.-H. Chen, F.-S. Pai, and R.-Y. Weng, “Development of Supercapacitor-Aided Hybrid Energy Storage System to Enhance Battery Life Cycle of Electric Vehicles,” Sustainability, vol. 13, no. 14, p. 7682, Jul. 2021, doi: 10.3390/su13147682.
  • [22] T. Zhu, R. Lot, R. G. A. Wills, and X. Yan, “Sizing a battery-supercapacitor energy storage system with battery degradation consideration for high-performance electric vehicles,” Energy, vol. 208, p. 118336, Oct. 2020, doi: 10.1016/j.energy.2020.118336.
  • [23] J. Shi, B. Xu, Y. Shen, and J. Wu, “Energy management strategy for battery/supercapacitor hybrid electric city bus based on driving pattern recognition,” Energy, vol. 243, p. 122752, Mar. 2022, doi: 10.1016/j.energy.2021.122752.
  • [24] G. Xiao, Q. Chen, P. Xiao, L. Zhang, and Q. Rong, “Multiobjective Optimization for a Li-Ion Battery and Supercapacitor Hybrid Energy Storage Electric Vehicle,” Energies, vol. 15, no. 8, p. 2821, Apr. 2022, doi: 10.3390/en15082821.
  • [25] F. Liu, C. Wang, and Y. Luo, “Parameter Matching Method of a Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicles,” World Electric Vehicle Journal, vol. 12, no. 4, p. 253, Dec. 2021, doi: 10.3390/wevj12040253.
  • [26] J. P. F. Trovao, V. D. N. Santos, C. H. Antunes, P. G. Pereirinha, and H. M. Jorge, “A Real-Time Energy Management Architecture for Multisource Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3223–3233, May 2015, doi: 10.1109/TIE.2014.2376883.
  • [27] F. Machado, J. P. F. Trovao, and C. H. Antunes, “Effectiveness of Supercapacitors in Pure Electric Vehicles Using a Hybrid Metaheuristic Approach,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 29–36, Jan. 2016, doi: 10.1109/TVT.2015.2390919.
  • [28] S. Lu, K. A. Corzine, and M. Ferdowsi, “A New Battery/Ultracapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516–1523, Jul. 2007, doi: 10.1109/TVT.2007.896971.
  • [29] D. M. Bu and C. Zhu, “Research on the Optimum Continuous Mileages under the Pure Electric Mode of Plug-In Hybrid Electric Vehicles,” Applied Mechanics and Materials, vol. 672–674, pp. 1179–1182, Oct. 2014, doi: 10.4028/www.scientific.net/AMM.672-674.1179.
  • [30] J. P. Trovão and C. H. Antunes, “A comparative analysis of meta-heuristic methods for power management of a dual energy storage system for electric vehicles,” Energy Conversion and Management, vol. 95, pp. 281–296, May 2015, doi: 10.1016/j.enconman.2015.02.030.
  • [31] F. Cheruiyot and D. Segera, “A Master-Slave Salp Swarm Algorithm Optimizer for Hybrid Energy Storage System Control Strategy in Electric Vehicles,” Journal of Energy, vol. 2022, pp. 1–20, Sep. 2022, doi: 10.1155/2022/1648433.
  • [32] K. Ye, P. Li, and H. Li, “Optimization of Hybrid Energy Storage System Control Strategy for Pure Electric Vehicle Based on Typical Driving Cycle,” Mathematical Problems in Engineering, vol. 2020, pp. 1–12, Jun. 2020, doi: 10.1155/2020/1365195.
  • [33] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.advengsoft.2013.12.007.
There are 33 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section Tasarım ve Teknoloji
Authors

Aydın Boyar 0000-0002-3680-855X

Yasin Kabalcı 0000-0003-1240-817X

Ersan Kabalcı 0000-0002-7964-9368

Early Pub Date July 4, 2024
Publication Date September 30, 2024
Submission Date April 30, 2024
Acceptance Date May 24, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Boyar, A., Kabalcı, Y., & Kabalcı, E. (2024). Grey Wolf Optimization Algorithm-Based Hybrid Energy Storage System Controller Design for Electric Vehicles. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(3), 428-439. https://doi.org/10.29109/gujsc.1475819

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526