Research Article
BibTex RIS Cite

Lignin-bazlı Gözenekli Karbon Üretimi ve Süperkapasitif Özelliklerinin İncelenmesi

Year 2024, Volume: 12 Issue: 3, 734 - 745, 30.09.2024
https://doi.org/10.29109/gujsc.1491497

Abstract

Artan fosil yakıt tüketimi ve buna bağlı çevre sorunlarına ilişkin artan küresel kaygılar, bilim insanlarını yeni, yeşil ve sürdürülebilir enerji kaynakları ve teknolojileri bulmaya yöneltmiştir. Bu çalışmada, atık lignin biyokütlesi, hidrotermal karbonizasyon ve ardından termal tavlama yoluyla başarıyla kükürt katkılı gözenekli karbona dönüştürüldü. Hazırlanan gözenekli karbondaki kükürt yüzey içeriği %9.10 kadar bulunmuştur. Karbon yüzeyini aktive etmek için KOH veya ZnCl2 muamelesini kullanan geleneksel sentez yöntemlerinin ötesinde, nikel nitrat tuzu ile aktifleştirilen sentez stratejisi geliştirilmiştir. Elde edilen bulgulara göre, gözenekli karbonların yüzey aktivasyonu, sentez işlemi sırasında nikel nitrat aracılığıyla gerçekleştirildi. Elde edilen karbon elektrodlar, mikro/mezo gözeneklilik ve grafitik/amorf karbon yapısının yanı sıra 165 m2/g kadar yüksek BET yüzey alanına sahiptir. Hazırlanan kendinden kükürt katkılı elektrot malzemeleri, süper kapasitör uygulamaları için yüksek elektrokimyasal aktivite sergilemiştir. Kükürt katkılı karbon Ni-GC-1100 elektrotu, 1 A/g akım yoğunluğunda 165 F/g kapasitans ve yüksek akım yoğunluğunda, kapasitansının 5.000 döngü sonrasında bile fazla değişmediği ve yüksek dayanıklılık sergilediği görülmüştür.

References

  • [1] Gogotsi, P.S. a. Y.: Materials for electrochemical capacitors. Nature. 7, (2008)
  • [2] Maher F. El-Kady, Y.S., R. b. K.: Graphene for batteries, supercapacitors and beyond. Nature Reviews. 1, (2016)
  • [3] Luo, H., Liu, Z., Chao, L., Wu, X., Lei, X., Chang, Z., Sun, X.: Synthesis of hierarchical porous N-doped sandwich-type carbon composites as high-performance supercapacitor electrodes. J Mater Chem A Mater. 3, 3667–3675 (2015). https://doi.org/10.1039/c4ta05843g
  • [4] Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 41, 797–828 (2012). https://doi.org/10.1039/c1cs15060j
  • [5] Zhi, M., Xiang, C., Li, J., Li, M., Wu, N.: Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale. 5, 72–88 (2013). https://doi.org/10.1039/c2nr32040a
  • [6] Asiha, R., Fitriania, Rahmadyantia, D., Nurdiansahb, H., Karimc, N.A., Sarid, D.P., Bahfiee, F., Nakajimaf, H., Noerochimb, L., Ramlic, M.M., and Darmintoa.: Dual Doping of Sulfur and Nitrogen Induces Hierarchical Porous Carbon from Wastes Medical Masks for Supercapacitor Electrodes. International Journal of Nanoelectronics and Materials. 17:275-280 (2023). https://doi.org/10.58915/ijneam.v17ijune.868
  • [7] Shejinia, R., Mohanrajb, K., Minc, H.S., Henryd, J., Sivakumare, G.: Designing the redox activity of CuMoO4 electrodes on N-rich reduced graphene oxide nanocomposite for high performance supercapacitor. Solid State Sciences. 154:107586 (2024) https://doi.org/10.1016/j.solidstatesciences.2024.107586
  • [8] Song, K., Wang, R., Sub, H., Liub, M., Hub, L., Liu, C., Liu, W., Lv, X., Xin, Yuntao.: Preparation of V2O3 by a short process of ammonium salt reduction and its electrocatalytic properties investigation. Journal of Environmental Chemical Engineering. 12:112854 (2024). https://doi.org/10.1016/j.jece.2024.112854
  • [9] Demir, M., Tessema, T.D., Farghaly, A.A., Nyankson, E., Saraswat, S.K., Aksoy, B., Islamoglu, T., Collinson, M.M., El-Kaderi, H.M., Gupta, R.B.: Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications. Int J Energy Res. 42, 2686–2700 (2018). https://doi.org/10.1002/er.4058
  • [10] Yang, F.M., Xiong, Z.G., He, G.W.: The excellent rate capacitive features and competent CO2 capture performance of porous N-doped C(N) material. Applied Energy. 367:123426 (2024). https://doi.org/10.1016/j.apenergy.2024.123426
  • [11] Demir, M., Saraswat, S.K., Gupta, R.B.: Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors. RSC Adv. 7, 42430–42442 (2017). https://doi.org/10.1039/c7ra07984b
  • [12] Aziz, S.B., Abdulwahid, R.T., Brza, M.A., Ahmed, M.B., Murad, A.R., Tahir, H.B., Abdullah, R.M., Hadi, J.M., Hussen, S.A.: Exploring the sustainable frontier by investigating structural, electrochemical and ion transport properties of potassium salt-doped PVA-based polymer electrolyte for supercapacitor application. Journal of Energy Storage. 71:108175 (2023). https://doi.org/10.1016/j.est.2023.108175
  • [13] Zhang, L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/b813846j
  • [14] Rahmadyanti, D., Fitriani, Asih, R., Nurdiansah, H., Karim, N.A., Sari, D.P., Bahfie, F., Noerochim, L., Ramli, M.M., and Darminto.: Synthesis Routes of Sulfur-doped Porous Carbon from Mask Wastes for the Application of Supercapacitor Electrodes. Journal of Physics: Conference Series 2780:012006 (2024). DOI 10.1088/1742-6596/2780/1/012006
  • [15] Kiciński, W., Szala, M., Bystrzejewski, M.: Sulfur-doped porous carbons: Synthesis and applications, (2014)
  • [16] Zhang, D., Hao, Y., Zheng, L., Ma, Y., Feng, H., Luo, H.: Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. J Mater Chem A Mater. 1, 7584–7591 (2013). https://doi.org/10.1039/c3ta11208j
  • [17] Ghotbi, M.Y., Sikiru, S., Rajabi, A., Soleimani, H., Kou, L., Ansari, M.N.M., Ramachandaramurthy, V.K.: ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices. Chemical Engineering Journal. 485:150018 (2024) https://doi.org/10.1016/j.cej.2024.150018
  • [18] Tan, S., Yao, Z., Liu, Z., Li, L., Huang, H.: Fabrication of graphene supported Zn BTC with different morphologies and their supercapacitor performance. Ionics. 30:1051–1060 (2024). https://doi.org/10.1007/s11581-023-05329-9
  • [19] Yu, X., Park, S.K., Yeon, S.H., Park, H.S.: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes. J Power Sources. 278, 484–489 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.102
  • [20] Cai, J., Niu, H., Li, Z., Du, Y., Cizek, P., Xie, Z., Xiong, H., Lin, T.: High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers. ACS Appl Mater Interfaces. 7, 14946–14953 (2015). https://doi.org/10.1021/acsami.5b03757
  • [21] Deng, J., Li, M., Wang, Y.: Biomass-derived carbon: Synthesis and applications in energy storage and conversion, (2016)
  • [22] Yu, W., Wang, H., Liu, S., Mao, N., Liu, X., Shi, J., Liu, W., Chen, S., Wang, X.: N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A Mater. 4, 5973–5983 (2016). https://doi.org/10.1039/c6ta01821a
  • [23] Shamsuri, N.A., Hamsan, M.H., Shukur, M.F., Alias, Y., Halim, S.N.A., Aziz, S.B., Jahidin, A.H., Sulaiman, M., Yuwana, L., Siong, S.O., Sarih, N.M., Kadir, M.F.Z.: Enhancing EDLC applications with [BMIM]BF4-integrated cellulose gel electrolyte for sustainable energy storage. Journal of Energy Storage. 75: 109559 (2024) https://doi.org/10.1016/j.est.2023.109559
  • [24] Jeon, J.W., Zhang, L., Lutkenhaus, J.L., Laskar, D.D., Lemmon, J.P., Choi, D., Nandasiri, M.I., Hashmi, A., Xu, J., Motkuri, R.K., Fernandez, C.A., Liu, J., Tucker, M.P., McGrail, P.B., Yang, B., Nune, S.K.: Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. ChemSusChem. 8, 428–432 (2015). https://doi.org/10.1002/cssc.201402621
  • [25] Graglia, M., et al.: Nitro Lignin-Derived Nitrogen-Doped Carbon as an Efficient and Sustainable Electrocatalyst for Oxygen Reduction. ACS Nano. 10, 4364–4371 (2016)
  • [26] Wang, Y., Hao, P., Lei, L., and Hou, Y.: Preparation of flexible and binder-free lignin-based carbon nanofiber electrode materials by electrospinning in aqueous system. Nordic Pulp & Paper Research Journal. 38(4):633-643 (2023). https://doi.org/10.1515/npprj-2023-0026
  • [27] Du, B., Zhu, H., Xu, J., Bai, Y., Wang, Q., Wang, X., Zhou, J.: N-S co-doping lignin-based carbon magnetic nanoparticles as high performance supercapacitor and electromagnetic wave absorber. International Journal of Biological Macromolecules. 242:125032 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125032
  • [28] Wu, Y., Cao, J.P., Zhao, X.Y., Zhuang, Q.Q., Zhou, Z., Huang, Y., Wei, X.Y.: High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2. Applied Surface Science. 508:144536 (2020). https://doi.org/10.1016/j.apsusc.2019.144536
  • [29] Demir-Cakan, R., Baccile, N., Antonietti, M., Titirici, M.M.: Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chemistry of Materials. 21, 484–490 (2009). https://doi.org/10.1021/cm802141h
  • [30] Gönen, M., Nyankson, E., Gupta, R.B.: Boric acid production from colemanite together with ex situ CO2 sequestration. Ind Eng Chem Res. 55, 5116–5124 (2016). https://doi.org/10.1021/acs.iecr.6b00378
  • [31] Ramsurn, H., Kumar, S., Gupta, R.B.: Enhancement of biochar gasification in alkali hydrothermal medium by passivation of inorganic components using Ca(OH)2. Energy and Fuels. 25, 2389–2398 (2011). https://doi.org/10.1021/ef200438b
  • [32] Qinxing Xie, R.B.A.Z.Y.Z.S.W.C.X.P.Z.: Sustainable Low-Cost Green Electrodes with High Volumetric Capacitance for Aqueous Symmetric Supercapacitors with High Energy Density. ACS Sustain Chem Eng. 4, 1422–1430 (2016)
  • [33] Conglai Long, L.J.X.W.Y.J.D.Y.C.W.T.W.Z.F.: Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon N Y. 93, 412–420 (2015)
  • [34] Wang, L., Zheng, Y., Zhang, Q., Zuo, L., Chen, S., Chen, S., Hou, H., Song, Y.: Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Adv. 4, 51072–51079 (2014). https://doi.org/10.1039/c4ra07955h
  • [35] Gu, W., Sevilla, M., Magasinski, A., Fuertes, A.B., Yushin, G.: Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: A case study for pseudocapacitance detection. Energy Environ Sci. 6, 2465–2476 (2013). https://doi.org/10.1039/c3ee41182f
  • [36] Sevilla, M., Mokaya, R.: Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. In: Energy and Environmental Science. pp. 1250–1280. Royal Society of Chemistry (2014)
  • [37] Huang, C.H., Doong, R.A., Gu, D., Zhao, D.: Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. Carbon N Y. 49, 3055–3064 (2011). https://doi.org/10.1016/j.carbon.2011.03.026
  • [38] Sevilla, M., Fuertes, A.B.: Catalytic graphitization of templated mesoporous carbons. Carbon N Y. 44, 468–474 (2006). https://doi.org/10.1016/j.carbon.2005.08.019
  • [39] Ma, G., Yang, Q., Sun, K., Peng, H., Ran, F., Zhao, X., Lei, Z.: Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol. 197, 137–142 (2015). https://doi.org/10.1016/j.biortech.2015.07.100
  • [40] Fiset, E., Bae, J.S., Rufford, T.E., Bhatia, S., Lu, G.Q., Hulicova-Jurcakova, D.: Effects of structural properties of silicon carbide-derived carbons on their electrochemical double-layer capacitance in aqueous and organic electrolytes. Journal of Solid State Electrochemistry. 18, 703–711 (2014). https://doi.org/10.1007/s10008-013-2306-x
  • [41] Lee, M., Kim, G.P., Don Song, H., Park, S., Yi, J.: Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology. 25, (2014). https://doi.org/10.1088/0957-4484/25/34/345601
  • [42] Bottu, M., Crow, M.L., Elmore, A.C., Atcitty, S.: A Power Electronic Conditioner Using Ultracapacitors to Improve Wind Turbine Power Quality. Smart Grid and Renewable Energy. 4(1): 28131 (2013). DOI:10.4236/sgre.2013.41010
  • [43] Libich, J., Máca, J., Vondrák, Jiří., Čech, O., Sedlaříková, M.: Supercapacitors: Properties and applications. Journal of Energy Storage. 17:224-22 (2018). https://doi.org/10.1016/j.est.2018.03.012
  • [44] Rawat, M.S., and Vadhera, S.: A Comprehensive Review on Impact of Wind and Solar Photovoltaic Energy Sources on Voltage Stability of Power Grid. Journal of Engg. Research. 7(4): 178-202 (2019).
  • [45] Sahin, M.E., and Blaabjerg, F.: A Hybrid PV-Battery/Supercapacitor System and a Basic Active Power Control Proposal in MATLAB/Simulink. Electronics. 9:129 (2020). http://dx.doi.org/10.3390/electronics9010129
  • [46] Nippon Chemi-Con. Stanley Electric and Tamura Announce the Development of “Super CaLeCS,” an Environment-Friendly EDLC Powered LED Street Lamp; Press Release Nippon Chemi-Con Corp.: Tokyo, Japan, 2010.
  • [47] Hamilton, T.: Next Stop: Ultracapacitor Buses MIT Technology Review. (2009-10-19). Available online: Technologyreview.com (accessed on 29 May 2013).

Lignin-Based Porous Carbon Production and Investigation of Its Supercapacitive Properties

Year 2024, Volume: 12 Issue: 3, 734 - 745, 30.09.2024
https://doi.org/10.29109/gujsc.1491497

Abstract

Increasing global concerns about increasing fossil fuel consumption and related environmental problems have led scientists to find new, green and sustainable energy sources and technologies. In this study, waste lignin biomass was successfully converted into sulfur-doped porous carbon by hydrothermal carbonization followed by thermal annealing. The sulfur surface content in the prepared porous carbon was found to be 9.10%. Beyond traditional synthesis methods using KOH or ZnCl2 treatment to activate the carbon surface, a nickel nitrate salt-activated synthesis strategy has been developed. According to the findings, surface activation of porous carbons was achieved through nickel nitrate during the synthesis process. The resulting carbon electrodes have a BET surface area as high as 165 m2 g-1, as well as micro/mesoporosity and graphitic/amorphous carbon structure. The prepared self-sulfur-doped electrode materials exhibited high electrochemical activity for supercapacitor applications. It has been observed that the sulfur-doped carbon Ni-GC-1100 electrode has a capacitance of 165 F g-1 at a current density of 1 A g-1 and at high current density, its capacitance does not change much even after 5.000 cycles and exhibits high durability.

References

  • [1] Gogotsi, P.S. a. Y.: Materials for electrochemical capacitors. Nature. 7, (2008)
  • [2] Maher F. El-Kady, Y.S., R. b. K.: Graphene for batteries, supercapacitors and beyond. Nature Reviews. 1, (2016)
  • [3] Luo, H., Liu, Z., Chao, L., Wu, X., Lei, X., Chang, Z., Sun, X.: Synthesis of hierarchical porous N-doped sandwich-type carbon composites as high-performance supercapacitor electrodes. J Mater Chem A Mater. 3, 3667–3675 (2015). https://doi.org/10.1039/c4ta05843g
  • [4] Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 41, 797–828 (2012). https://doi.org/10.1039/c1cs15060j
  • [5] Zhi, M., Xiang, C., Li, J., Li, M., Wu, N.: Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale. 5, 72–88 (2013). https://doi.org/10.1039/c2nr32040a
  • [6] Asiha, R., Fitriania, Rahmadyantia, D., Nurdiansahb, H., Karimc, N.A., Sarid, D.P., Bahfiee, F., Nakajimaf, H., Noerochimb, L., Ramlic, M.M., and Darmintoa.: Dual Doping of Sulfur and Nitrogen Induces Hierarchical Porous Carbon from Wastes Medical Masks for Supercapacitor Electrodes. International Journal of Nanoelectronics and Materials. 17:275-280 (2023). https://doi.org/10.58915/ijneam.v17ijune.868
  • [7] Shejinia, R., Mohanrajb, K., Minc, H.S., Henryd, J., Sivakumare, G.: Designing the redox activity of CuMoO4 electrodes on N-rich reduced graphene oxide nanocomposite for high performance supercapacitor. Solid State Sciences. 154:107586 (2024) https://doi.org/10.1016/j.solidstatesciences.2024.107586
  • [8] Song, K., Wang, R., Sub, H., Liub, M., Hub, L., Liu, C., Liu, W., Lv, X., Xin, Yuntao.: Preparation of V2O3 by a short process of ammonium salt reduction and its electrocatalytic properties investigation. Journal of Environmental Chemical Engineering. 12:112854 (2024). https://doi.org/10.1016/j.jece.2024.112854
  • [9] Demir, M., Tessema, T.D., Farghaly, A.A., Nyankson, E., Saraswat, S.K., Aksoy, B., Islamoglu, T., Collinson, M.M., El-Kaderi, H.M., Gupta, R.B.: Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications. Int J Energy Res. 42, 2686–2700 (2018). https://doi.org/10.1002/er.4058
  • [10] Yang, F.M., Xiong, Z.G., He, G.W.: The excellent rate capacitive features and competent CO2 capture performance of porous N-doped C(N) material. Applied Energy. 367:123426 (2024). https://doi.org/10.1016/j.apenergy.2024.123426
  • [11] Demir, M., Saraswat, S.K., Gupta, R.B.: Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors. RSC Adv. 7, 42430–42442 (2017). https://doi.org/10.1039/c7ra07984b
  • [12] Aziz, S.B., Abdulwahid, R.T., Brza, M.A., Ahmed, M.B., Murad, A.R., Tahir, H.B., Abdullah, R.M., Hadi, J.M., Hussen, S.A.: Exploring the sustainable frontier by investigating structural, electrochemical and ion transport properties of potassium salt-doped PVA-based polymer electrolyte for supercapacitor application. Journal of Energy Storage. 71:108175 (2023). https://doi.org/10.1016/j.est.2023.108175
  • [13] Zhang, L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/b813846j
  • [14] Rahmadyanti, D., Fitriani, Asih, R., Nurdiansah, H., Karim, N.A., Sari, D.P., Bahfie, F., Noerochim, L., Ramli, M.M., and Darminto.: Synthesis Routes of Sulfur-doped Porous Carbon from Mask Wastes for the Application of Supercapacitor Electrodes. Journal of Physics: Conference Series 2780:012006 (2024). DOI 10.1088/1742-6596/2780/1/012006
  • [15] Kiciński, W., Szala, M., Bystrzejewski, M.: Sulfur-doped porous carbons: Synthesis and applications, (2014)
  • [16] Zhang, D., Hao, Y., Zheng, L., Ma, Y., Feng, H., Luo, H.: Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. J Mater Chem A Mater. 1, 7584–7591 (2013). https://doi.org/10.1039/c3ta11208j
  • [17] Ghotbi, M.Y., Sikiru, S., Rajabi, A., Soleimani, H., Kou, L., Ansari, M.N.M., Ramachandaramurthy, V.K.: ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices. Chemical Engineering Journal. 485:150018 (2024) https://doi.org/10.1016/j.cej.2024.150018
  • [18] Tan, S., Yao, Z., Liu, Z., Li, L., Huang, H.: Fabrication of graphene supported Zn BTC with different morphologies and their supercapacitor performance. Ionics. 30:1051–1060 (2024). https://doi.org/10.1007/s11581-023-05329-9
  • [19] Yu, X., Park, S.K., Yeon, S.H., Park, H.S.: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes. J Power Sources. 278, 484–489 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.102
  • [20] Cai, J., Niu, H., Li, Z., Du, Y., Cizek, P., Xie, Z., Xiong, H., Lin, T.: High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers. ACS Appl Mater Interfaces. 7, 14946–14953 (2015). https://doi.org/10.1021/acsami.5b03757
  • [21] Deng, J., Li, M., Wang, Y.: Biomass-derived carbon: Synthesis and applications in energy storage and conversion, (2016)
  • [22] Yu, W., Wang, H., Liu, S., Mao, N., Liu, X., Shi, J., Liu, W., Chen, S., Wang, X.: N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A Mater. 4, 5973–5983 (2016). https://doi.org/10.1039/c6ta01821a
  • [23] Shamsuri, N.A., Hamsan, M.H., Shukur, M.F., Alias, Y., Halim, S.N.A., Aziz, S.B., Jahidin, A.H., Sulaiman, M., Yuwana, L., Siong, S.O., Sarih, N.M., Kadir, M.F.Z.: Enhancing EDLC applications with [BMIM]BF4-integrated cellulose gel electrolyte for sustainable energy storage. Journal of Energy Storage. 75: 109559 (2024) https://doi.org/10.1016/j.est.2023.109559
  • [24] Jeon, J.W., Zhang, L., Lutkenhaus, J.L., Laskar, D.D., Lemmon, J.P., Choi, D., Nandasiri, M.I., Hashmi, A., Xu, J., Motkuri, R.K., Fernandez, C.A., Liu, J., Tucker, M.P., McGrail, P.B., Yang, B., Nune, S.K.: Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. ChemSusChem. 8, 428–432 (2015). https://doi.org/10.1002/cssc.201402621
  • [25] Graglia, M., et al.: Nitro Lignin-Derived Nitrogen-Doped Carbon as an Efficient and Sustainable Electrocatalyst for Oxygen Reduction. ACS Nano. 10, 4364–4371 (2016)
  • [26] Wang, Y., Hao, P., Lei, L., and Hou, Y.: Preparation of flexible and binder-free lignin-based carbon nanofiber electrode materials by electrospinning in aqueous system. Nordic Pulp & Paper Research Journal. 38(4):633-643 (2023). https://doi.org/10.1515/npprj-2023-0026
  • [27] Du, B., Zhu, H., Xu, J., Bai, Y., Wang, Q., Wang, X., Zhou, J.: N-S co-doping lignin-based carbon magnetic nanoparticles as high performance supercapacitor and electromagnetic wave absorber. International Journal of Biological Macromolecules. 242:125032 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125032
  • [28] Wu, Y., Cao, J.P., Zhao, X.Y., Zhuang, Q.Q., Zhou, Z., Huang, Y., Wei, X.Y.: High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2. Applied Surface Science. 508:144536 (2020). https://doi.org/10.1016/j.apsusc.2019.144536
  • [29] Demir-Cakan, R., Baccile, N., Antonietti, M., Titirici, M.M.: Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chemistry of Materials. 21, 484–490 (2009). https://doi.org/10.1021/cm802141h
  • [30] Gönen, M., Nyankson, E., Gupta, R.B.: Boric acid production from colemanite together with ex situ CO2 sequestration. Ind Eng Chem Res. 55, 5116–5124 (2016). https://doi.org/10.1021/acs.iecr.6b00378
  • [31] Ramsurn, H., Kumar, S., Gupta, R.B.: Enhancement of biochar gasification in alkali hydrothermal medium by passivation of inorganic components using Ca(OH)2. Energy and Fuels. 25, 2389–2398 (2011). https://doi.org/10.1021/ef200438b
  • [32] Qinxing Xie, R.B.A.Z.Y.Z.S.W.C.X.P.Z.: Sustainable Low-Cost Green Electrodes with High Volumetric Capacitance for Aqueous Symmetric Supercapacitors with High Energy Density. ACS Sustain Chem Eng. 4, 1422–1430 (2016)
  • [33] Conglai Long, L.J.X.W.Y.J.D.Y.C.W.T.W.Z.F.: Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon N Y. 93, 412–420 (2015)
  • [34] Wang, L., Zheng, Y., Zhang, Q., Zuo, L., Chen, S., Chen, S., Hou, H., Song, Y.: Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Adv. 4, 51072–51079 (2014). https://doi.org/10.1039/c4ra07955h
  • [35] Gu, W., Sevilla, M., Magasinski, A., Fuertes, A.B., Yushin, G.: Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: A case study for pseudocapacitance detection. Energy Environ Sci. 6, 2465–2476 (2013). https://doi.org/10.1039/c3ee41182f
  • [36] Sevilla, M., Mokaya, R.: Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. In: Energy and Environmental Science. pp. 1250–1280. Royal Society of Chemistry (2014)
  • [37] Huang, C.H., Doong, R.A., Gu, D., Zhao, D.: Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. Carbon N Y. 49, 3055–3064 (2011). https://doi.org/10.1016/j.carbon.2011.03.026
  • [38] Sevilla, M., Fuertes, A.B.: Catalytic graphitization of templated mesoporous carbons. Carbon N Y. 44, 468–474 (2006). https://doi.org/10.1016/j.carbon.2005.08.019
  • [39] Ma, G., Yang, Q., Sun, K., Peng, H., Ran, F., Zhao, X., Lei, Z.: Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol. 197, 137–142 (2015). https://doi.org/10.1016/j.biortech.2015.07.100
  • [40] Fiset, E., Bae, J.S., Rufford, T.E., Bhatia, S., Lu, G.Q., Hulicova-Jurcakova, D.: Effects of structural properties of silicon carbide-derived carbons on their electrochemical double-layer capacitance in aqueous and organic electrolytes. Journal of Solid State Electrochemistry. 18, 703–711 (2014). https://doi.org/10.1007/s10008-013-2306-x
  • [41] Lee, M., Kim, G.P., Don Song, H., Park, S., Yi, J.: Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology. 25, (2014). https://doi.org/10.1088/0957-4484/25/34/345601
  • [42] Bottu, M., Crow, M.L., Elmore, A.C., Atcitty, S.: A Power Electronic Conditioner Using Ultracapacitors to Improve Wind Turbine Power Quality. Smart Grid and Renewable Energy. 4(1): 28131 (2013). DOI:10.4236/sgre.2013.41010
  • [43] Libich, J., Máca, J., Vondrák, Jiří., Čech, O., Sedlaříková, M.: Supercapacitors: Properties and applications. Journal of Energy Storage. 17:224-22 (2018). https://doi.org/10.1016/j.est.2018.03.012
  • [44] Rawat, M.S., and Vadhera, S.: A Comprehensive Review on Impact of Wind and Solar Photovoltaic Energy Sources on Voltage Stability of Power Grid. Journal of Engg. Research. 7(4): 178-202 (2019).
  • [45] Sahin, M.E., and Blaabjerg, F.: A Hybrid PV-Battery/Supercapacitor System and a Basic Active Power Control Proposal in MATLAB/Simulink. Electronics. 9:129 (2020). http://dx.doi.org/10.3390/electronics9010129
  • [46] Nippon Chemi-Con. Stanley Electric and Tamura Announce the Development of “Super CaLeCS,” an Environment-Friendly EDLC Powered LED Street Lamp; Press Release Nippon Chemi-Con Corp.: Tokyo, Japan, 2010.
  • [47] Hamilton, T.: Next Stop: Ultracapacitor Buses MIT Technology Review. (2009-10-19). Available online: Technologyreview.com (accessed on 29 May 2013).
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Electrochemical Energy Storage and Conversion, Electrochemical Technologies
Journal Section Tasarım ve Teknoloji
Authors

Murat Yılmaz 0000-0002-6465-6960

Müslüm Demir 0000-0001-6842-8124

Early Pub Date September 27, 2024
Publication Date September 30, 2024
Submission Date May 28, 2024
Acceptance Date August 27, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Yılmaz, M., & Demir, M. (2024). Lignin-bazlı Gözenekli Karbon Üretimi ve Süperkapasitif Özelliklerinin İncelenmesi. Gazi University Journal of Science Part C: Design and Technology, 12(3), 734-745. https://doi.org/10.29109/gujsc.1491497

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526