Research Article
BibTex RIS Cite

Ürün Tasarımında Parametrik Yüzey Modelleme: Alias ve Dynamo Entegrasyonuyla A Sınıfı Yüzey Modelleme Örneği

Year 2024, Volume: 12 Issue: 3, 585 - 595, 30.09.2024
https://doi.org/10.29109/gujsc.1531342

Abstract

Ürün tasarım süreçleri, bilgisayar destekli yazılımlar, kodlama teknolojileri ve 3B ölçüm teknolojilerinin etkisi altında evrim geçirmektedir. Bu teknolojik gelişmeler, tasarımcılara fikirlerini bilgisayar ortamına hızlı bir şekilde aktarma ve karmaşık modelleri kısa sürede oluşturma imkanı sağlamaktadır. Gelişmiş görselleştirme için etkili 3B modeller kullanarak, tasarımcılar A sınıfı yüzey modelleme yöntemleriyle verimli üretimi destekleyen ürünler tasarlamaktadır. Tasarımcılardan yalnızca bir fikir oluşturmak değil, tüm tasarım alternatiflerini değerlendirmeleri beklenmektedir. Bu aşamada, birçok tasarımcı, tasarım sürecini etkin bir şekilde kontrol etmek amacıyla parametrik tasarım araçlarına başvurmaktadır. Parametrik tasarım yöntemi, karmaşık geometriler ve bileşenler üzerinde dinamik kontrol sağlayarak, tasarımcıların modellerini belirli değişkenler ve kısıtlamalar üzerinden yönetmelerine olanak tanımaktadır. Bu yöntem aynı zamanda tasarım sürecini hızlandırmakla kalmayıp, ürün varyasyonlarını keşfetme konusunda tasarımcılara bilgi sağlamaktadır. Bu çalışmada, yüzey formu gereği yüzey birleşim noktalarının detaylı incelenmesi, ardından yeniden düzenlenmesi ve gerektiğinde yüzeylerin en baştan tekrar üretilmesi için elektrikli süpürge örneği seçilmiştir. Yüzey formu oluşturma ve analizinde Alias ve Dynamo yazılımları kullanılmıştır. Çalışmadaki amaç, A sınıfı modelleme ile estetik kaliteye sahip pürüzsüz yüzeyler elde etmek ve parametrik tasarım araçlarıyla ürün çeşitliliği sağlamaktır. Elde edilen veriler ile, A sınıfı modellemenin hangi aşamada kullanılması gerektiği ve parametrik yöntem hakkında araştırmacılara ışık tutacak klavuz niteliğinde bir çalışma yapılmıştır.

References

  • [1] Ülker, E. (2007). Yapay Zeka Teknikleri Kullanılarak Yüzey Modelleme. [Yüksek lisans tezi /, Selçuk Üniversitesi].
  • [2] İnternet: Autodesk. URL: https://knowledge.autodesk.com/support/alias-products/getting-started/caas/.
  • [3] Green, H. (2017). Form Finding of Grid Shells a Parametric Approach Using Dynamic Relaxation. [Yüksek lisans tezi, KTH Royal Institute of Technology].
  • [4] Oxman, R. (2017). Thinking Difference: Theories and Models of Parametric Design Thinking. Design Studies, 52, 4–39.
  • [5] Giannini, F., Monti, M., & Podehl, G. (2006). Aesthetic-Driven Tools for Industrial Design. Journal of Engineering Design, 17(3), 193–215.
  • [6] Hu, G., Cao, H., Wang, X., & Qin, X. (2017). G2 Continuity Conditions for Generalized Bézier-like Surfaces with Multiple Shape Parameters. Journal of Inequalities and Applications, 2017.
  • [7] Tecklenburg, G. F. K. (2010). Design of Automotive Body Assemblies with Distributed Tasks under Support of Parametric Associative Design (PAD). [Doktora tezi, University of Hertfordshire].
  • [8] Vasold, M. (2015). Entwicklung einer wissensbasierten Methodik zur Prüfung von Class-A Daten in der Fahrzeugentwicklung. [Yüksek lisans tezi, Technischen Universität Graz].
  • [9] Stadler, S., & Hirz, M. (2016). A knowledge-based Framework for Integration of Computer Aided Styling and Computer Aided Engineering. Computer-Aided Design and Applications, 13(4), 558–569.
  • [10] Crăciun, I., Popa, D., Serdean, F., & Tudose, L. (2020). On Approximate Aesthetic Curves. Symmetry, 12(9).
  • [11] Zhao, B., Ai, P., & Han, J. (2012). Study on the Control Method of NURBS Curve Quality for Computer Aided Industrial Design. ICCSE 2012 - Proceedings of 2012 7th International Conference on Computer Science and Education, Iccse, 658–661.
  • [12] https://help.autodesk.com/view/ALIAS/2024/ENU/?guid=GUID-E1BDFBD0-33CC-44C4-866D-5F367105A050 [13] Mathias, M., Velay, X., & Wade, R. (2008). The Challenges of Assessing Digital Product Design. Proceedings of E&PDE 2008, the 10th International Conference on Engineering and Product Design Education.
  • [14] Vinuesa Rosa, P. (2021). Diseño con superficies de clase A. Metodología de trabajo, propuesta de manual y aplicación práctica en Autodesk Alias.
  • [15] Xiyuan, W., Yingjie, L., Xiaomwen, X., & Jianchen, H. (2013). Application and Research of the Design Process of Concept a-Surface. Advanced Materials Research, 628, 229–239.
  • [16] Vukašinović, N., & Duhovnik, J. (2019). Advanced CAD modeling." Explicit, Parametric, Free-form CAD and Re-engineering. Springer Tracts in Mechanical Engineering.
  • [17] https://help.autodesk.com/view/ALIAS/2024/ENU/?guid=GUID-FDAFFC3D-A327-46E4-8AED-739043E175A7
  • [18] https://help.autodesk.com/view/ALIAS/2024/ENU/?guid=GUID-E44AB3A3-18DF-42F4-B4D4-870EFB42534A
  • [19] Woodbury, R., Aish, R., & Kilian, A. (2007). Some Patterns for Parametric Modeling. Expanding Bodies: Art, Cities, Environment - Proceedings of the ACADIA 2007 Conference, 222–229.
  • [20] Eltaweel, A., & Su, Y. (2017). Parametric Design and Daylighting: A Literature Review. Renewable and Sustainable Energy Reviews, 73, 1086–1103.
  • [21] Gu, N., Yu, R., & Behbahani, P. A. (2018). Parametric Design: Theoretical Development and Algorithmic Foundation for Design Generation in Architecture. Handbook of the Mathematics of the Arts and Sciences. Springer International Publishing, 1–22.
  • [22] Vogt, T. M. (2016). Current application of graphical programming in the design phase of a BIM project: Development opportunities and future scenarios with “Dynamo”. [Yüksek lisans tezi, University of Northumbria at Newcastle].

Parametric Surface Modeling in Product Design: A Case Study of Class A Surface Modeling with Alias and Dynamo Integration

Year 2024, Volume: 12 Issue: 3, 585 - 595, 30.09.2024
https://doi.org/10.29109/gujsc.1531342

Abstract

The field of product design is undergoing a period of significant transformation, driven by the advent of computer-aided software, coding technologies, and 3D measurement technologies. These technological advances permit designers to rapidly computerize their ideas and create intricate models in a relatively short period of time. By employing efficient three-dimensional models for enhanced visualization, designers are developing products that facilitate efficient manufacturing through the utilization of Class A surface modeling techniques. It is expected that designers will evaluate all potential design alternatives, rather than merely conceptualizing an idea. At this juncture, a considerable number of designers have recourse to parametric design tools with a view to exerting effective control over the design process. The parametric design method provides designers with dynamic control over complex geometries and components, allowing them to manage their models through specific variables and constraints. This method not only accelerates the design process but also furnishes designers with information to explore product variations. In this study, a vacuum cleaner example was selected for detailed examination of surface joints, subsequent reorganization, and, when necessary, reproduction of surfaces from scratch. Alias and Dynamo software were employed for surface form generation and analysis. The objective of the study is to obtain smooth surfaces with aesthetic quality through class A modeling and to produce a variety of products with parametric design tools.

References

  • [1] Ülker, E. (2007). Yapay Zeka Teknikleri Kullanılarak Yüzey Modelleme. [Yüksek lisans tezi /, Selçuk Üniversitesi].
  • [2] İnternet: Autodesk. URL: https://knowledge.autodesk.com/support/alias-products/getting-started/caas/.
  • [3] Green, H. (2017). Form Finding of Grid Shells a Parametric Approach Using Dynamic Relaxation. [Yüksek lisans tezi, KTH Royal Institute of Technology].
  • [4] Oxman, R. (2017). Thinking Difference: Theories and Models of Parametric Design Thinking. Design Studies, 52, 4–39.
  • [5] Giannini, F., Monti, M., & Podehl, G. (2006). Aesthetic-Driven Tools for Industrial Design. Journal of Engineering Design, 17(3), 193–215.
  • [6] Hu, G., Cao, H., Wang, X., & Qin, X. (2017). G2 Continuity Conditions for Generalized Bézier-like Surfaces with Multiple Shape Parameters. Journal of Inequalities and Applications, 2017.
  • [7] Tecklenburg, G. F. K. (2010). Design of Automotive Body Assemblies with Distributed Tasks under Support of Parametric Associative Design (PAD). [Doktora tezi, University of Hertfordshire].
  • [8] Vasold, M. (2015). Entwicklung einer wissensbasierten Methodik zur Prüfung von Class-A Daten in der Fahrzeugentwicklung. [Yüksek lisans tezi, Technischen Universität Graz].
  • [9] Stadler, S., & Hirz, M. (2016). A knowledge-based Framework for Integration of Computer Aided Styling and Computer Aided Engineering. Computer-Aided Design and Applications, 13(4), 558–569.
  • [10] Crăciun, I., Popa, D., Serdean, F., & Tudose, L. (2020). On Approximate Aesthetic Curves. Symmetry, 12(9).
  • [11] Zhao, B., Ai, P., & Han, J. (2012). Study on the Control Method of NURBS Curve Quality for Computer Aided Industrial Design. ICCSE 2012 - Proceedings of 2012 7th International Conference on Computer Science and Education, Iccse, 658–661.
  • [12] https://help.autodesk.com/view/ALIAS/2024/ENU/?guid=GUID-E1BDFBD0-33CC-44C4-866D-5F367105A050 [13] Mathias, M., Velay, X., & Wade, R. (2008). The Challenges of Assessing Digital Product Design. Proceedings of E&PDE 2008, the 10th International Conference on Engineering and Product Design Education.
  • [14] Vinuesa Rosa, P. (2021). Diseño con superficies de clase A. Metodología de trabajo, propuesta de manual y aplicación práctica en Autodesk Alias.
  • [15] Xiyuan, W., Yingjie, L., Xiaomwen, X., & Jianchen, H. (2013). Application and Research of the Design Process of Concept a-Surface. Advanced Materials Research, 628, 229–239.
  • [16] Vukašinović, N., & Duhovnik, J. (2019). Advanced CAD modeling." Explicit, Parametric, Free-form CAD and Re-engineering. Springer Tracts in Mechanical Engineering.
  • [17] https://help.autodesk.com/view/ALIAS/2024/ENU/?guid=GUID-FDAFFC3D-A327-46E4-8AED-739043E175A7
  • [18] https://help.autodesk.com/view/ALIAS/2024/ENU/?guid=GUID-E44AB3A3-18DF-42F4-B4D4-870EFB42534A
  • [19] Woodbury, R., Aish, R., & Kilian, A. (2007). Some Patterns for Parametric Modeling. Expanding Bodies: Art, Cities, Environment - Proceedings of the ACADIA 2007 Conference, 222–229.
  • [20] Eltaweel, A., & Su, Y. (2017). Parametric Design and Daylighting: A Literature Review. Renewable and Sustainable Energy Reviews, 73, 1086–1103.
  • [21] Gu, N., Yu, R., & Behbahani, P. A. (2018). Parametric Design: Theoretical Development and Algorithmic Foundation for Design Generation in Architecture. Handbook of the Mathematics of the Arts and Sciences. Springer International Publishing, 1–22.
  • [22] Vogt, T. M. (2016). Current application of graphical programming in the design phase of a BIM project: Development opportunities and future scenarios with “Dynamo”. [Yüksek lisans tezi, University of Northumbria at Newcastle].
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Tasarım ve Teknoloji
Authors

Sema Göveç Er 0000-0001-7235-8034

Güven Meral 0000-0002-0744-2165

Early Pub Date September 26, 2024
Publication Date September 30, 2024
Submission Date August 10, 2024
Acceptance Date September 11, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Göveç Er, S., & Meral, G. (2024). Ürün Tasarımında Parametrik Yüzey Modelleme: Alias ve Dynamo Entegrasyonuyla A Sınıfı Yüzey Modelleme Örneği. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(3), 585-595. https://doi.org/10.29109/gujsc.1531342

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526