Research Article
BibTex RIS Cite

Evaluation of the engineering performance of clay improved using fly ash, silica fume and glass fiber.

Year 2024, Volume: 12 Issue: 4, 784 - 798, 31.12.2024
https://doi.org/10.29109/gujsc.1393857

Abstract

This study investigated the engineering properties of clayey soil enhanced through the incorporation of mineral additives and fibers. To achieve this objective, silica fume and fly ash were introduced to the clayey soil at ratios of 5%, 10%, and 20%, and glass fibers were incorporated at ratios of 1%, 1.5%, and 2%. Atterberg limits and Proctor tests were performed to assess the physical characteristics of the soil treated with additives. Unconfined compressive strength tests (UCS) were executed on the treated clayey soil, considering various curing durations, and diverse water contents to assess its strength attributes. Experiment results indicated that the inclusion of silica fume and fly ash led to a reduction in the plasticity index and liquid limit values of the clay soil. Specifically, the plasticity index decreased by 2.080% with the addition of 20% silica fume, and 20% fly ash resulted in a decrease of 0.042%. Analysis of UCS values revealed a decrease in the strength of the clayey soil as the water content rises. The clayey soil exhibited higher UCS strength below the optimum water level, and the introduction of mineral additives and fibers further enhanced this strength. Silica fume exhibited a more pronounced impact on UCS values. An increase in water content caused a decrease in the UCS of the clayey soil. The brittle index values of clay samples containing silica fume, fly ash, and glass fibers indicated increased brittleness compared to natural clay samples at the optimum water content. These findings underscore the positive influence of added mineral additives and fibers on the physical and engineering properties of clay soil.

Supporting Institution

Bu araştırma, Fırat Üniversitesi Bilimsel Araştırma Projeleri (FUBAP) tarafından desteklenmiştir (Proje No. TEKF.23.52). FUBAP'ın sağladığı mali destek için teşekkür ederiz.

Project Number

TEKF.23.52

Thanks

Bu araştırma, Fırat Üniversitesi Bilimsel Araştırma Projeleri (FUBAP) tarafından desteklenmiştir (Proje No. TEKF.23.52). FUBAP'ın sağladığı mali destek için teşekkür ederiz.

References

  • [1] Sengul T., Akray N., Vitosoglu Y., Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils, Construction and Building Materials, 400 (2023), 132590.
  • [2] Miraki H., Shariatmadari N., Ghadir P., Jahandari S., Tao Z., Siddique R., Clayey soil stabilization using alkali-activated volcanic ash and slag, Journal of Rock Mechanics and Geotechnical Engineering, 14(2) (2022), 576-591.
  • [3] de Araújo M.T., Ferrazzo S.T., Chaves H.M., da Rocha C.G., Consoli N.C., Mechanical behavior, mineralogy, and microstructure of alkali-activated wastes-based binder for a clayey soil stabilization, Construction and Building Materials, 362 (2023), 129757.
  • [4] Odeh N.A., Al-Rkaby A.H., Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil, Case Studies in Construction Materials, 16 (2022), e00988.
  • [5] Naeimi M., Chu J., Khosroshahi M., Zenouzi L.K., Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation, Geoderma, 429 (2023), 116183.
  • [6] MC Fernandes V., Rudgers J.A, Collins S.L., Garcia‐Pichel F., Rainfall pulse regime drives biomass and community composition in biological soil crusts, Ecology, 103(9) (2022), e3744.
  • [7] Armistead S.J., Smith C.C., Stanilan S.S., Sustainable biopolymer soil stabilization in saline rich, arid conditions: A ‘micro to macro’approach. Scientific Reports, 12(1), (2022), 2880.
  • [8] Saldanha R.B., Carlos H., Filho S., Mallmann J.E.C., Consoli N.C,. Physical–mineralogical–chemical characterization of carbide lime: an environment-friendly chemical additive for soil stabilization. Journal of Materials in Civil Engineering, 30(6), (2018).
  • [9] Wang D., Fonte S.J., Parikh S.J., Six J., Scow K.M., Biochar additions can enhance soil structure and the physical stabilization of C in aggregates, Geoderma, 303, (2017) 110-117.
  • [10] Bahadori H., Hasheminezhad A., Taghizadeh F., experimental study on marl soil stabilization using natural pozzolans, Journal of Materials in Civil Engineering, 31(2), (2019).
  • [11] Jalal F.E., Xu Y., Jamhiri B., Memon S.A., On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (CSMs): A comprehensive review, Advances in Materials Science and Engineering, (2020), 1510969.
  • [12] Dayioglu M., Cetin B., Nam S., Stabilization of expansive Belle Fourche shale clay with different chemical additives, Applied Clay Science, 146(2017), 56–69.
  • [13] Anburuvel A., The engineering behind soil stabilization with additives: A state-of-the-art review, Geotechnical and Geological Engineering, (2023), 1-42.
  • [14] Ghiasi V., Haghtalab Joraghani M., Rashno S., An overview of chemical soil stabilization methods. Road, 31(116), (2023),151-166.
  • [15] Vichan S., Rachan R., Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash, Soils and Foundations, 53(2), (2013), 272–281.
  • [16] Chen C., Wei K., Gu J., Huang X., Dai X., Liu, Q., Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil, Polymers, 14(4), (2022),787.
  • [17] Wang C., Li Z., Cai B., Tan Q., Li Y., He L., ... Deng, Y., Effect of root system of the Dicranopteris dichotoma on the soil unconfined compressive strength of collapsing walls in hilly granite area of South China, Catena, 216(2022), 106411.
  • [18] Ghasem Ghanbari P., Momeni M., Mousivand M., Bayat M., Unconfined compressive strength characteristics of treated peat soil with cement and basalt fibre, International Journal of Engineering, 35(5), (2022), 1089-1095.
  • [19] Mojtahedi F. S.F., Ahmadihosseini A., Sadeghi H., An artificial intelligence based data-driven method for forecasting unconfined compressive strength of cement stabilized soil by deep mixing technique, Geotechnical and Geological Engineering, 41(1), (2023), 491-514.
  • [20] Totiç E., Göktepe F., Yaşar M., Uçucu kül katkısının killi zeminlerin mekanik özelliklerine etkisi, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(2), (2019), 769-778.
  • [21] Türköz M., Savaş H., Tasci G., The effect of silica fume and lime on geotechnical properties of a clay soil showing both swelling and dispersive features, Arabian Journal of Geosciences, (2018), 11:735.
  • [22] Rajabi A.M., Ghorashi S.M.S., Yeganeh M.M., The efect of polypropylene and glass fibers on strength and failure behavior of clayey sand soil, Arabian Journal of Geosciences, (2023), 16:6.
  • [23] Moreira E.B., Baldovino J.A., Rose J.L., dos Santos Izzo R.L., Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures, Journal of Rock Mechanics and Geotechnical Engineering, 11(2), (2019), 369-378.
  • [24] Bilici H., Okur D.V., Türköz M., Savaş H., Kil zeminin dayanımı üzerinde uçucu kül ve yüksek fırın cürufu katkılarının etkisi ve karşılaştırmalı analizi, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(2), (2020), 910-919.
  • [25] Çimen, Ö. Keleş, E., Yüksek plastisiteli bir kilin mühendislik özelliklerine uçucu kül ve kireç katkılarının etkisi, İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 1(2), (2020), 80-90.
  • [26] Şahbaz İ., Ünsever Y.S., Çimento ve polipropilen lif kullanarak düşük plastisiteli kil zeminlerin iyileştirilmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), (2020), 1409-1420.
  • [27] Shourijeh P.T., Rad A.M., Bigloo F.H.B., Binesh S.M. Application of recycled concrete aggregates for stabilization of clay reinforced with recycled tire polymer fibers and glass fibers, Construction and Building Materials, 355(2022), 129172.
  • [28] Valipour M., Shourijeh P.T., Mohammadinia A., Application of recycled tire polymer fibers and glass fibers for clay reinforcement, Transportation geotechnics, 27(2021), 100474.
  • [29] Xu L., Niu L., Influence of fibre type on unconfined compressive strength of fibre-reinforced cemented soil under freeze-thaw cycling, International Journal of Materials and Product Technology, 65(3), (2022), 248-257.
  • [30] Baştan E.E., Demir G., Şişen Zemin özelliklerinin atık malzemeler ile iyileştirilmesi. OMÜ Mühendislik Bilimleri ve Teknolojisi Dergisi, 2(1), (2022), 25-36.
  • [31] Çınar M., Erbaşı K. Zemin iyileştirmesinde kullanılan jet grout yönteminde çimento yerine ikame edilen atık malzemelerin mekanik ve reolojik özelliklerine etkisinin incelenmesi: literatür araştırması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), (2023). 1742-1767.
  • [32] Topçuoğlu Y.A., Gürocak Z. Uçucu Kül, silis dumanı ve tüf ile stabilize edilmiş bentonitte meydana gelen moleküler değişimlerin fourier dönüşümlü kızılötesi spektroskopisi (ft-ır) yöntemi ile belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 11(1), (2023), 94-112.
  • [33] Rabab’ah S., Al Hattamleh O., Aldeeky H., Alfoul B.A. Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications. Case Studies in Construction Materials, 14, (2021), e00485.
  • [34] Orakoglu M. E., Liu J., Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil. KSCE Journal of Civil Engineering, 21(2017), 2128-2140.
  • [35] ASTM D2166-06(2021), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil," ASTM International, West Conshohocken, PA, 2021, www.astm.org.
  • [36] ASTM D698-00ae1, Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft³ (600 kN-m/m³)), West Conshohocken, PA, 2017, www.astm.org.
  • [37] ASTM D4318-10e1, Standard test methods for liquid limit, plastic limit, and plasticity index of soils, West Conshohocken, PA, 2017, www.astm.org.
  • [38] Mirzababaei M., Miraftab M., Mohamed M., McMahon P., Unconfined compression strength of reinforced clays with carpet waste fibers. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), (2013), 483-493.
  • [39] Patel S.K., Singh B., Strength and deformation behavior of fiber-reinforced cohesive soil under varying moisture and compaction states. Geotechnical and Geological Engineering, 35(4), (2017), 1767-1781.
  • [40] Nataraj M., McManis K., Strength and deformation properties of soils reinforced with fibrillated fibers, Geosynthetics International, 4(1), (1997), 65-79.
  • [41] Al-Soudany K., Remediation of clayey soil using silica fume. In MATEC Web of Conferences (Vol. 162, p. 01017), (2018), EDP Sciences.
  • [42] Consoli N.C., Lopes Jr L.D.S., Prietto P.D. M., Festugato L., Cruz R.C. Variables controlling stiffness and strength of lime-stabilized soils. Journal of geotechnical and geoenvironmental engineering, 137(6), (2011), 628-632.
  • [43] Jahandari S., Mojtahedi S.F., Zivari F., Jafari M., Mahmoudi M.R., Shokrgozar A., ... Jalalifar H., The impact of long-term curing period on the mechanical features of lime-geogrid treated soils. Geomechanics and Geoengineering, 17(1), (2022), 269-281.
  • [44] Venkata Vydehi K., Moghal A.A.B., Effect of biopolymer inclusion and curing conditions on the failure strain and elastic modulus of cohesive soil. In Indian Geotechnical Conference (pp. 257-264). 2023, Springer, Singapore.
  • [45] Saberian M., Jahandari S., Li J., Zivari F., Effect of curing, capillary action, and groundwater level increment on geotechnical properties of lime concrete: experimental and prediction studies. Journal of Rock Mechanics and Geotechnical Engineering, 9(4), (2017), 638e47.

Uçucu kül, silis dumanı ve cam elyaf kullanılarak iyileştirilen kilin mühendislik performansının değerlendirilmesi

Year 2024, Volume: 12 Issue: 4, 784 - 798, 31.12.2024
https://doi.org/10.29109/gujsc.1393857

Abstract

Bu çalışmada mineral katkı ve lif kullanılarak iyileştirilen killi zeminin mühendislik özellikleri incelenmiştir. Bu amaçla killi zemine %5, %10, %20 oranlarında uçucu kül ile silis dumanı, %1, %1,5, %2 oranlarında cam elyaf eklenmiştir. Katkı maddeleri ile stabilize edilen zeminin fiziksel özelliklerini belirlemek için Atterberg limitleri ve Proktor deneyi uygulanmıştır. Dayanım özelliklerini değerlendirebilmek için stabilize edilmiş killi zemine farklı kür sürelerinde ve farklı su içeriklerinde tek eksenli basınç testi uygulanmıştır. Deneylerin sonucunda, silis dumanı ve uçucu kül katkılarının kil zeminin plastisite indeksi ve likit limit değerlerinde azalmaya neden olduğu görülmüştür. Silis dumanının %20 oranında ilave edilmesiyle plastisite indeksi %2,080 azalırken, %20 uçucu kül ilave edilmesiyle %0,042 azalmıştır. Serbest basınç dayanım değerleri incelendiğinde, su içeriğinin artmasıyla birlikte killi zeminin UCS dayanımı azalmıştır. Optimum su içeriğinden düşük su içeriğine sahip killi zemin daha büyük UCS dayanımına sahipken, mineral katkı ve lif ilave edilmesiyle UCS dayanımı artmıştır. Silis dumanının UCS değerleri üzerinde daha etkili olduğu gözlenmiştir. Su içeriği arttıkça killi zeminin UCS yenilme mukavemetinin azaldığı görülmüştür. Silis dumanı, uçucu kül ve cam elyaf ilave edilen kil numunelerinin kırılganlık indeksi değerlerinin, optimum su içeriğinde doğal kil numunelerine göre daha kırılgan hale geldiği görülmüştür. Elde edilen sonuçlar, kil zeminine ilave edilen mineral katkı malzemelerinin ve liflerin zeminin fiziksel ve mühendislik özellikleri üzerinde etkili olduğunu göstermiştir.

Project Number

TEKF.23.52

References

  • [1] Sengul T., Akray N., Vitosoglu Y., Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils, Construction and Building Materials, 400 (2023), 132590.
  • [2] Miraki H., Shariatmadari N., Ghadir P., Jahandari S., Tao Z., Siddique R., Clayey soil stabilization using alkali-activated volcanic ash and slag, Journal of Rock Mechanics and Geotechnical Engineering, 14(2) (2022), 576-591.
  • [3] de Araújo M.T., Ferrazzo S.T., Chaves H.M., da Rocha C.G., Consoli N.C., Mechanical behavior, mineralogy, and microstructure of alkali-activated wastes-based binder for a clayey soil stabilization, Construction and Building Materials, 362 (2023), 129757.
  • [4] Odeh N.A., Al-Rkaby A.H., Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil, Case Studies in Construction Materials, 16 (2022), e00988.
  • [5] Naeimi M., Chu J., Khosroshahi M., Zenouzi L.K., Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation, Geoderma, 429 (2023), 116183.
  • [6] MC Fernandes V., Rudgers J.A, Collins S.L., Garcia‐Pichel F., Rainfall pulse regime drives biomass and community composition in biological soil crusts, Ecology, 103(9) (2022), e3744.
  • [7] Armistead S.J., Smith C.C., Stanilan S.S., Sustainable biopolymer soil stabilization in saline rich, arid conditions: A ‘micro to macro’approach. Scientific Reports, 12(1), (2022), 2880.
  • [8] Saldanha R.B., Carlos H., Filho S., Mallmann J.E.C., Consoli N.C,. Physical–mineralogical–chemical characterization of carbide lime: an environment-friendly chemical additive for soil stabilization. Journal of Materials in Civil Engineering, 30(6), (2018).
  • [9] Wang D., Fonte S.J., Parikh S.J., Six J., Scow K.M., Biochar additions can enhance soil structure and the physical stabilization of C in aggregates, Geoderma, 303, (2017) 110-117.
  • [10] Bahadori H., Hasheminezhad A., Taghizadeh F., experimental study on marl soil stabilization using natural pozzolans, Journal of Materials in Civil Engineering, 31(2), (2019).
  • [11] Jalal F.E., Xu Y., Jamhiri B., Memon S.A., On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (CSMs): A comprehensive review, Advances in Materials Science and Engineering, (2020), 1510969.
  • [12] Dayioglu M., Cetin B., Nam S., Stabilization of expansive Belle Fourche shale clay with different chemical additives, Applied Clay Science, 146(2017), 56–69.
  • [13] Anburuvel A., The engineering behind soil stabilization with additives: A state-of-the-art review, Geotechnical and Geological Engineering, (2023), 1-42.
  • [14] Ghiasi V., Haghtalab Joraghani M., Rashno S., An overview of chemical soil stabilization methods. Road, 31(116), (2023),151-166.
  • [15] Vichan S., Rachan R., Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash, Soils and Foundations, 53(2), (2013), 272–281.
  • [16] Chen C., Wei K., Gu J., Huang X., Dai X., Liu, Q., Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil, Polymers, 14(4), (2022),787.
  • [17] Wang C., Li Z., Cai B., Tan Q., Li Y., He L., ... Deng, Y., Effect of root system of the Dicranopteris dichotoma on the soil unconfined compressive strength of collapsing walls in hilly granite area of South China, Catena, 216(2022), 106411.
  • [18] Ghasem Ghanbari P., Momeni M., Mousivand M., Bayat M., Unconfined compressive strength characteristics of treated peat soil with cement and basalt fibre, International Journal of Engineering, 35(5), (2022), 1089-1095.
  • [19] Mojtahedi F. S.F., Ahmadihosseini A., Sadeghi H., An artificial intelligence based data-driven method for forecasting unconfined compressive strength of cement stabilized soil by deep mixing technique, Geotechnical and Geological Engineering, 41(1), (2023), 491-514.
  • [20] Totiç E., Göktepe F., Yaşar M., Uçucu kül katkısının killi zeminlerin mekanik özelliklerine etkisi, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(2), (2019), 769-778.
  • [21] Türköz M., Savaş H., Tasci G., The effect of silica fume and lime on geotechnical properties of a clay soil showing both swelling and dispersive features, Arabian Journal of Geosciences, (2018), 11:735.
  • [22] Rajabi A.M., Ghorashi S.M.S., Yeganeh M.M., The efect of polypropylene and glass fibers on strength and failure behavior of clayey sand soil, Arabian Journal of Geosciences, (2023), 16:6.
  • [23] Moreira E.B., Baldovino J.A., Rose J.L., dos Santos Izzo R.L., Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures, Journal of Rock Mechanics and Geotechnical Engineering, 11(2), (2019), 369-378.
  • [24] Bilici H., Okur D.V., Türköz M., Savaş H., Kil zeminin dayanımı üzerinde uçucu kül ve yüksek fırın cürufu katkılarının etkisi ve karşılaştırmalı analizi, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(2), (2020), 910-919.
  • [25] Çimen, Ö. Keleş, E., Yüksek plastisiteli bir kilin mühendislik özelliklerine uçucu kül ve kireç katkılarının etkisi, İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 1(2), (2020), 80-90.
  • [26] Şahbaz İ., Ünsever Y.S., Çimento ve polipropilen lif kullanarak düşük plastisiteli kil zeminlerin iyileştirilmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), (2020), 1409-1420.
  • [27] Shourijeh P.T., Rad A.M., Bigloo F.H.B., Binesh S.M. Application of recycled concrete aggregates for stabilization of clay reinforced with recycled tire polymer fibers and glass fibers, Construction and Building Materials, 355(2022), 129172.
  • [28] Valipour M., Shourijeh P.T., Mohammadinia A., Application of recycled tire polymer fibers and glass fibers for clay reinforcement, Transportation geotechnics, 27(2021), 100474.
  • [29] Xu L., Niu L., Influence of fibre type on unconfined compressive strength of fibre-reinforced cemented soil under freeze-thaw cycling, International Journal of Materials and Product Technology, 65(3), (2022), 248-257.
  • [30] Baştan E.E., Demir G., Şişen Zemin özelliklerinin atık malzemeler ile iyileştirilmesi. OMÜ Mühendislik Bilimleri ve Teknolojisi Dergisi, 2(1), (2022), 25-36.
  • [31] Çınar M., Erbaşı K. Zemin iyileştirmesinde kullanılan jet grout yönteminde çimento yerine ikame edilen atık malzemelerin mekanik ve reolojik özelliklerine etkisinin incelenmesi: literatür araştırması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), (2023). 1742-1767.
  • [32] Topçuoğlu Y.A., Gürocak Z. Uçucu Kül, silis dumanı ve tüf ile stabilize edilmiş bentonitte meydana gelen moleküler değişimlerin fourier dönüşümlü kızılötesi spektroskopisi (ft-ır) yöntemi ile belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 11(1), (2023), 94-112.
  • [33] Rabab’ah S., Al Hattamleh O., Aldeeky H., Alfoul B.A. Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications. Case Studies in Construction Materials, 14, (2021), e00485.
  • [34] Orakoglu M. E., Liu J., Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil. KSCE Journal of Civil Engineering, 21(2017), 2128-2140.
  • [35] ASTM D2166-06(2021), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil," ASTM International, West Conshohocken, PA, 2021, www.astm.org.
  • [36] ASTM D698-00ae1, Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft³ (600 kN-m/m³)), West Conshohocken, PA, 2017, www.astm.org.
  • [37] ASTM D4318-10e1, Standard test methods for liquid limit, plastic limit, and plasticity index of soils, West Conshohocken, PA, 2017, www.astm.org.
  • [38] Mirzababaei M., Miraftab M., Mohamed M., McMahon P., Unconfined compression strength of reinforced clays with carpet waste fibers. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), (2013), 483-493.
  • [39] Patel S.K., Singh B., Strength and deformation behavior of fiber-reinforced cohesive soil under varying moisture and compaction states. Geotechnical and Geological Engineering, 35(4), (2017), 1767-1781.
  • [40] Nataraj M., McManis K., Strength and deformation properties of soils reinforced with fibrillated fibers, Geosynthetics International, 4(1), (1997), 65-79.
  • [41] Al-Soudany K., Remediation of clayey soil using silica fume. In MATEC Web of Conferences (Vol. 162, p. 01017), (2018), EDP Sciences.
  • [42] Consoli N.C., Lopes Jr L.D.S., Prietto P.D. M., Festugato L., Cruz R.C. Variables controlling stiffness and strength of lime-stabilized soils. Journal of geotechnical and geoenvironmental engineering, 137(6), (2011), 628-632.
  • [43] Jahandari S., Mojtahedi S.F., Zivari F., Jafari M., Mahmoudi M.R., Shokrgozar A., ... Jalalifar H., The impact of long-term curing period on the mechanical features of lime-geogrid treated soils. Geomechanics and Geoengineering, 17(1), (2022), 269-281.
  • [44] Venkata Vydehi K., Moghal A.A.B., Effect of biopolymer inclusion and curing conditions on the failure strain and elastic modulus of cohesive soil. In Indian Geotechnical Conference (pp. 257-264). 2023, Springer, Singapore.
  • [45] Saberian M., Jahandari S., Li J., Zivari F., Effect of curing, capillary action, and groundwater level increment on geotechnical properties of lime concrete: experimental and prediction studies. Journal of Rock Mechanics and Geotechnical Engineering, 9(4), (2017), 638e47.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering, Soil Mechanics in Civil Engineering
Journal Section Tasarım ve Teknoloji
Authors

Nagihan Doğan 0009-0004-3825-2358

Müge Elif Fırat 0000-0002-5391-5859

Project Number TEKF.23.52
Early Pub Date November 14, 2024
Publication Date December 31, 2024
Submission Date November 22, 2023
Acceptance Date October 21, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Doğan, N., & Fırat, M. E. (2024). Uçucu kül, silis dumanı ve cam elyaf kullanılarak iyileştirilen kilin mühendislik performansının değerlendirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(4), 784-798. https://doi.org/10.29109/gujsc.1393857

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526