Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 4, 809 - 818, 31.12.2024
https://doi.org/10.29109/gujsc.1522364

Abstract

Project Number

FDK 2023-8444.

References

  • [1] Chen Q., Sheng H., Jiang S. Integrated Physical Modeling and Optimal Control Method of Limited-Angle Torque Motor in Fuel Metering Apparatus. Micromachines 2022; 13(6), 949.
  • [2] Krishna PM., Kannan N. Brushless DC limited angle torque motor. In Proceedings of the 1996 international conference on power electronics, drives and energy systems for industrial growth, vol. 1; 1996. pp. 511–516.
  • [3] Tsai C.C., Lin S.C., Huang H.C., Cheng Y.M. Design and control of a brushless DC limited angle torque motor with its application to fuel control of small-scale gas turbine engines. Mechatronics 2009; 19(1), pp. 29–41.
  • [4] Nasiri-Zarandi R., Mirsalim M., Cavagnino A. Analysis, optimization, and prototyping of a brushless DC limited-angle torque-motor with segmented rotor pole tip structure. IEEE Trans. Ind. Electron 2015; 62 (8): 4985–4993.
  • [5] Wu S., Zhao X., Jiao Z., Luk P.C.K., Jiu C. Multi-objective optimal design of a toroidally wound radial-flux Halbach permanent magnet array limited angle torque motor. IEEE Trans. Ind. Electron. 2016; 64 (4): 2962–2971.
  • [6] Hekmati P., Yazdanpanah R., Mirsalim M., Ghaemi E. Radial-flux permanent-magnet limited-angle torque motors. IEEE Trans. Ind. Electron. 2016; 64 (4): 1884–1892.
  • [7] Li Y., Ma P., Wang Q., Zhao M. Analysis, Modeling, and Verification of Limited Angle Torque Motors with Irregular Slot Numbers for Performance Improvement. IEEE Trans. Energy Convers. 2020; 35 (2): 1004–1013.
  • [8] Roohnavazfar M., Houshmand M., Nasiri-Zarandi R., Mirsalim M. Optimization of design parameters of a limited angle torque motor using analytical hierarchy process and axiomatic design theory, Production & Manufacturing Research. 2014; 2 (1): 400-414.
  • [9] Widdowson G. P., Howe D., Evison, P. R. (1991). Computer-aided optimization of rare-earth permanent magnet actuators, Computation in Electromagnetics. London, 93,96.
  • [10] Saaty T. L. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology. 1977; 15 (3): 234–281.
  • [11] Suh N. P. (2001). Axiomatic design: Advances and applications. New York.
  • [12] Xiao R., Zhou M., Hao S.G. Design of Position Servo Driver for DC Limited Angle Torque Motor. Micromotors 2008; 41, 37–39+42.
  • [13] Zhao H.W. Design and Research on LABLTM Used for the Electronic Governor’s Actuator of Diesel Engine. Master’s Thesis, Harbin Engineering University, Harbin, China, 2008.
  • [14] Chen S.L., Kamaldin N., Teo T.J., Liang W., Teo C.S., Yang G., Tan K.K. Toward comprehensive modeling and large-angle tracking control of a limited-angle torque actuator with cylindrical Halbach. IEEE/ASME Trans. Mechatronics. 2015; 21 (1): 431–442.
  • [15] Lee H.-Y., Yoon S. Y., Kwon S. O., Shin J. Y., Park S. H., Lim M. S. A Study on a Slotless Brushless DC Motor with Toroidal Winding. Processes 2021; 9 (11):1881.

Four Pole Limited Angle Toroidal Motor Magnetic Design

Year 2024, Volume: 12 Issue: 4, 809 - 818, 31.12.2024
https://doi.org/10.29109/gujsc.1522364

Abstract

This article presents the theoretical analysis of limited angle torque motors (LATM), numerical modeling for 4-pole types and the effect of various dimensions on motor performance. First, the magnetic equivalent circuit model and equations of the LATM are defined and the motor torque expression for 4 poles is established. Then AHP, a decision-making tool, is used as a reference to determine the best LATM design parameters. The cogging torque, constant torque region and peak torque value of the motor at the lower and upper values of the obtained design parameters are analyzed in the finite element analysis environment. The transient analysis of the best design considering certain limitations is performed and the operating performance is analyzed in no-load condition. With the proposed model, the torque of the 4-pole limited angle torque motor in the constant torque region is obtained at 95% of the peak torque. This value is verified by finite element analysis.

Supporting Institution

Gazi University Scientific Research Unit

Project Number

FDK 2023-8444.

References

  • [1] Chen Q., Sheng H., Jiang S. Integrated Physical Modeling and Optimal Control Method of Limited-Angle Torque Motor in Fuel Metering Apparatus. Micromachines 2022; 13(6), 949.
  • [2] Krishna PM., Kannan N. Brushless DC limited angle torque motor. In Proceedings of the 1996 international conference on power electronics, drives and energy systems for industrial growth, vol. 1; 1996. pp. 511–516.
  • [3] Tsai C.C., Lin S.C., Huang H.C., Cheng Y.M. Design and control of a brushless DC limited angle torque motor with its application to fuel control of small-scale gas turbine engines. Mechatronics 2009; 19(1), pp. 29–41.
  • [4] Nasiri-Zarandi R., Mirsalim M., Cavagnino A. Analysis, optimization, and prototyping of a brushless DC limited-angle torque-motor with segmented rotor pole tip structure. IEEE Trans. Ind. Electron 2015; 62 (8): 4985–4993.
  • [5] Wu S., Zhao X., Jiao Z., Luk P.C.K., Jiu C. Multi-objective optimal design of a toroidally wound radial-flux Halbach permanent magnet array limited angle torque motor. IEEE Trans. Ind. Electron. 2016; 64 (4): 2962–2971.
  • [6] Hekmati P., Yazdanpanah R., Mirsalim M., Ghaemi E. Radial-flux permanent-magnet limited-angle torque motors. IEEE Trans. Ind. Electron. 2016; 64 (4): 1884–1892.
  • [7] Li Y., Ma P., Wang Q., Zhao M. Analysis, Modeling, and Verification of Limited Angle Torque Motors with Irregular Slot Numbers for Performance Improvement. IEEE Trans. Energy Convers. 2020; 35 (2): 1004–1013.
  • [8] Roohnavazfar M., Houshmand M., Nasiri-Zarandi R., Mirsalim M. Optimization of design parameters of a limited angle torque motor using analytical hierarchy process and axiomatic design theory, Production & Manufacturing Research. 2014; 2 (1): 400-414.
  • [9] Widdowson G. P., Howe D., Evison, P. R. (1991). Computer-aided optimization of rare-earth permanent magnet actuators, Computation in Electromagnetics. London, 93,96.
  • [10] Saaty T. L. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology. 1977; 15 (3): 234–281.
  • [11] Suh N. P. (2001). Axiomatic design: Advances and applications. New York.
  • [12] Xiao R., Zhou M., Hao S.G. Design of Position Servo Driver for DC Limited Angle Torque Motor. Micromotors 2008; 41, 37–39+42.
  • [13] Zhao H.W. Design and Research on LABLTM Used for the Electronic Governor’s Actuator of Diesel Engine. Master’s Thesis, Harbin Engineering University, Harbin, China, 2008.
  • [14] Chen S.L., Kamaldin N., Teo T.J., Liang W., Teo C.S., Yang G., Tan K.K. Toward comprehensive modeling and large-angle tracking control of a limited-angle torque actuator with cylindrical Halbach. IEEE/ASME Trans. Mechatronics. 2015; 21 (1): 431–442.
  • [15] Lee H.-Y., Yoon S. Y., Kwon S. O., Shin J. Y., Park S. H., Lim M. S. A Study on a Slotless Brushless DC Motor with Toroidal Winding. Processes 2021; 9 (11):1881.
There are 15 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section Tasarım ve Teknoloji
Authors

Akin Aydin 0000-0003-3284-9802

Ali Saygın 0000-0003-1800-9655

Project Number FDK 2023-8444.
Early Pub Date November 21, 2024
Publication Date December 31, 2024
Submission Date July 25, 2024
Acceptance Date October 19, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Aydin, A., & Saygın, A. (2024). Four Pole Limited Angle Toroidal Motor Magnetic Design. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(4), 809-818. https://doi.org/10.29109/gujsc.1522364

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526