Implementation of Battery-Integrated Transformerless High-Gain Smart Inverter
Year 2025,
Volume: 13 Issue: 3
Oguz Alkul
,
Şevki Demirbaş
Abstract
This study presents a novel battery-integrated, transformerless high-gain smart inverter model designed to enhance the efficiency and reliability of photovoltaic (PV) energy systems. The proposed system integrates an interleaved buck converter for battery charging and a transformerless high-gain DC-DC converter operating in parallel with the battery to supply the inverter source. Additionally, a two-level inverter is employed to ensure stable grid voltage generation.
The model incorporates several required control strategies, including Maximum Power Point Tracking (MPPT) for optimal solar energy utilization, active and reactive power control for grid-connected operation, and voltage regulation for off-grid scenarios. The bidirectional energy flow capability enables seamless power distribution between the PV array, battery storage, and the electrical grid, ensuring enhanced system performance. Simulation results validate the efficiency and stability of the proposed inverter model, demonstrating improved power conversion, reduced energy losses, and enhanced system flexibility. By eliminating the need for a transformer, the design achieves higher efficiency and lower cost while maintaining operational reliability. This research contributes to the development of more sustainable and intelligent PV energy solutions, paving the way for improved energy management in renewable power systems.
Ethical Statement
I declare that this study is original, that I have adhered to scientific ethical principles at all stages, that I have properly cited all sources, and that I have not altered any data.
Supporting Institution
Gazi Üniversity
Project Number
FBA-2023-8164
Thanks
The research article conducted here was supported by Gazi University with the project code FBA-2023-8164. The authors thank them for their support.
References
- [1] D. Parra, M. K. Patel, Effect of tariffs on the performance and economic benefits of PV-coupled battery systems. Applied Energy, 164 (2016) 175-187.
- [2] A. M. Mahfuz-Ur-Rahman, et al., An effective energy management with advanced converter and control for a PV-battery storage based microgrid to improve energy resiliency. IEEE Transactions on Industry Applications, 57:6 (2021) 6659-6668.
- [3] S. Y. Mousazadeh Mousavi, et al., Power quality enhancement and power management of a multifunctional interfacing inverter for PV and battery energy storage system. International Transactions on Electrical Energy Systems, 28:12 (2018) e2643.
- [4] D. Barater, et al., Recent advances in single‐phase transformerless photovoltaic inverters. IET Renewable Power Generation, 10:2 (2016) 260-273.
- [5] S. Saridakis, E. Koutroulis, F. Blaabjerg, Optimal design of modern transformerless PV inverter topologies. IEEE Transactions on Energy Conversion, 28:2 (2013) 394-404.
- [6] M. F. Kibria, et al., A comparative review on single-phase transformerless inverter topologies for grid-connected photovoltaic systems. Energies, 16:3 (2023) 1363.
- [7] O. Alkul, Ş. Demirbaş, Review of the solid-state transformers and an application of full bridge DC/DC converter. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7:2 (2019) 450-471.
- [8] M. Shayestegan, et al., An overview on prospects of new generation single-phase transformerless inverters for grid-connected photovoltaic (PV) systems. Renewable and Sustainable Energy Reviews, 82 (2018) 515-530.
- [9] MIT Energy Initiative, Managing Large-Scale Penetration of Intermittent Renewables, (2012).
- [10] S. Adak, Harmonics mitigation of stand-alone photovoltaic system using LC passive filter. Journal of Electrical Engineering & Technology, 16:5 (2021) 2389–2396.
- [11] S. Dlamini, I. E. Davidson, A. A. Adebiyi, Design and application of the passive filters for improved power quality in stand-alone PV systems. 2023 31st Southern African Universities Power Engineering Conference (SAUPEC), IEEE, (2023) 1–6.
- [12] K. H. Ahmed, S. J. Finney, B. W. Williams, Passive filter design for three-phase inverter interfacing in distributed generation. 2007 Compatibility in Power Electronics, IEEE, (2007).
- [13] C. Parisi, Multiphase buck design from start to finish (Part 1). Texas Instruments, Application Report SLVA882, 55 (2017).
- [14] H. Y. Ahmed, O. Abdel-Rahim, Z. M. Ali, New high-gain transformerless DC-DC boost converter system. Electronics, 11:5 (2022) 734.
- [15] M. Zhu, K. Yu, F. L. Luo, Switched inductor Z-source inverter. IEEE Transactions on Power Electronics, 25:8 (2010) 2150-2158.
- [16] A. Ayad, S. Hanafiah, R. Kennel, A comparison of quasi-Z-source inverter and traditional two-stage inverter for photovoltaic application. Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, VDE, (2015).
- [17] Y. V. Pavan Kumar, R. Bhimasingu, Design of voltage and current controller parameters using small signal model-based pole-zero cancellation method for improved transient response in microgrids. SN Applied Sciences, 3 (2021) 1-17.
- [18] M. M. B. Tappeh, J. S. Moghani, A. Khorsandi, Active and reactive power control strategy of the modular multilevel converter for grid-connected large-scale photovoltaic conversion plants. 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), IEEE, (2019).
- [19] E. Choque Pillco, L. F. C. Alberto, R. V. de Oliveira, Time scale stability analysis of a Hopf bifurcation in a wind–diesel hybrid microgrid. IET Renewable Power Generation, 14:9 (2020) 1491-1501.
- [20] P. K. Atri, P. S. Modi, N. S. Gujar, Design and development of solar charge controller by implementing two different MPPT algorithm. 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), IEEE, (2021).
- [21] A. Maliat, M. A. Mahmud, M. A. Razzak, Design and analysis of a 48V on-board fast charging system for electric vehicles. 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), IEEE, (2021).
Batarya Entegreli Transformatörsüz Yüksek Kazançlı Akıllı İnvertörün Uygulanması
Year 2025,
Volume: 13 Issue: 3
Oguz Alkul
,
Şevki Demirbaş
Abstract
Bu çalışma, fotovoltaik (PV) enerji sistemlerinin verimliliğini ve güvenilirliğini artırmak için tasarlanmış, bataryaya entegre, trafosuz yüksek kazançlı akıllı invertör modelini sunmaktadır. Önerilen sistem, batarya şarjı için iç içe geçmiş bir azaltan tip dönüştürücü ve evirici kaynağını beslemek için bataryayla paralel çalışan trafosuz yüksek kazançlı DC-DC dönüştürücüyü entegre eder. Ek olarak, kararlı şebeke voltajı üretimini sağlamak için iki seviyeli bir invertör kullanılır.
Model, optimum güneş enerjisi kullanımı için Maksimum Güç Noktası İzleme (MPPT), şebekeye bağlı çalışma için aktif ve reaktif güç kontrolü ve şebekeden bağımsız senaryolar için voltaj düzenlemesi dahil olmak üzere çeşitli gerekli kontrol stratejilerini içerir. Çift yönlü enerji akışı yeteneği, PV dizisi, batarya depolaması ve elektrik şebekesi arasında sorunsuz güç dağıtımını sağlayarak gelişmiş sistem performansı sağlar. Simülasyon sonuçları, önerilen invertör modelinin verimliliğini ve kararlılığını doğrulayarak, iyileştirilmiş güç dönüşümü, azaltılmış enerji kayıpları ve gelişmiş sistem esnekliğini göstermektedir. Bir trafoya olan ihtiyacı ortadan kaldırarak, tasarım operasyonel güvenilirliği korurken daha yüksek verimlilik ve daha düşük maliyet elde eder. Bu araştırma, yenilenebilir enerji sistemlerinde enerji yönetiminin iyileştirilmesinin önünü açarak daha sürdürülebilir ve akıllı PV enerji çözümlerinin geliştirilmesine katkıda bulunmaktadır.
Ethical Statement
Bu çalışmanın özgün olduğunu, tüm aşamalarında bilimsel etik ilkelere uyduğumu, kaynakları doğru şekilde belirttiğimi ve verilerde herhangi bir değişiklik yapmadığımı beyan ederim.
Supporting Institution
Gazi Üniversitesi
Project Number
FBA-2023-8164
Thanks
Burada yapılan araştırma makalesi Gazi Üniversitesi tarafından FBA-2023-8164 proje kodu ile desteklenmiştir. Yazarlar destekleri için kendilerine teşekkür eder.
References
- [1] D. Parra, M. K. Patel, Effect of tariffs on the performance and economic benefits of PV-coupled battery systems. Applied Energy, 164 (2016) 175-187.
- [2] A. M. Mahfuz-Ur-Rahman, et al., An effective energy management with advanced converter and control for a PV-battery storage based microgrid to improve energy resiliency. IEEE Transactions on Industry Applications, 57:6 (2021) 6659-6668.
- [3] S. Y. Mousazadeh Mousavi, et al., Power quality enhancement and power management of a multifunctional interfacing inverter for PV and battery energy storage system. International Transactions on Electrical Energy Systems, 28:12 (2018) e2643.
- [4] D. Barater, et al., Recent advances in single‐phase transformerless photovoltaic inverters. IET Renewable Power Generation, 10:2 (2016) 260-273.
- [5] S. Saridakis, E. Koutroulis, F. Blaabjerg, Optimal design of modern transformerless PV inverter topologies. IEEE Transactions on Energy Conversion, 28:2 (2013) 394-404.
- [6] M. F. Kibria, et al., A comparative review on single-phase transformerless inverter topologies for grid-connected photovoltaic systems. Energies, 16:3 (2023) 1363.
- [7] O. Alkul, Ş. Demirbaş, Review of the solid-state transformers and an application of full bridge DC/DC converter. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7:2 (2019) 450-471.
- [8] M. Shayestegan, et al., An overview on prospects of new generation single-phase transformerless inverters for grid-connected photovoltaic (PV) systems. Renewable and Sustainable Energy Reviews, 82 (2018) 515-530.
- [9] MIT Energy Initiative, Managing Large-Scale Penetration of Intermittent Renewables, (2012).
- [10] S. Adak, Harmonics mitigation of stand-alone photovoltaic system using LC passive filter. Journal of Electrical Engineering & Technology, 16:5 (2021) 2389–2396.
- [11] S. Dlamini, I. E. Davidson, A. A. Adebiyi, Design and application of the passive filters for improved power quality in stand-alone PV systems. 2023 31st Southern African Universities Power Engineering Conference (SAUPEC), IEEE, (2023) 1–6.
- [12] K. H. Ahmed, S. J. Finney, B. W. Williams, Passive filter design for three-phase inverter interfacing in distributed generation. 2007 Compatibility in Power Electronics, IEEE, (2007).
- [13] C. Parisi, Multiphase buck design from start to finish (Part 1). Texas Instruments, Application Report SLVA882, 55 (2017).
- [14] H. Y. Ahmed, O. Abdel-Rahim, Z. M. Ali, New high-gain transformerless DC-DC boost converter system. Electronics, 11:5 (2022) 734.
- [15] M. Zhu, K. Yu, F. L. Luo, Switched inductor Z-source inverter. IEEE Transactions on Power Electronics, 25:8 (2010) 2150-2158.
- [16] A. Ayad, S. Hanafiah, R. Kennel, A comparison of quasi-Z-source inverter and traditional two-stage inverter for photovoltaic application. Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, VDE, (2015).
- [17] Y. V. Pavan Kumar, R. Bhimasingu, Design of voltage and current controller parameters using small signal model-based pole-zero cancellation method for improved transient response in microgrids. SN Applied Sciences, 3 (2021) 1-17.
- [18] M. M. B. Tappeh, J. S. Moghani, A. Khorsandi, Active and reactive power control strategy of the modular multilevel converter for grid-connected large-scale photovoltaic conversion plants. 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), IEEE, (2019).
- [19] E. Choque Pillco, L. F. C. Alberto, R. V. de Oliveira, Time scale stability analysis of a Hopf bifurcation in a wind–diesel hybrid microgrid. IET Renewable Power Generation, 14:9 (2020) 1491-1501.
- [20] P. K. Atri, P. S. Modi, N. S. Gujar, Design and development of solar charge controller by implementing two different MPPT algorithm. 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), IEEE, (2021).
- [21] A. Maliat, M. A. Mahmud, M. A. Razzak, Design and analysis of a 48V on-board fast charging system for electric vehicles. 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), IEEE, (2021).