Review
BibTex RIS Cite

GEÇMİŞTEN GÜNÜMÜZE GAZ BASINÇ SENSÖRLERİ “BİR DERLEME”

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1622963

Abstract

Çalışmamız, endüstri, havacılık ve uzay, iklimlendirme, otomotiv ve biyomedikal alanlarında kullanılan gaz basınç sensörlerine odaklanmaktadır. Basınç sensörlerinin tarihsel gelişimi ele alındıktan sonra, sensörler iki ana başlık altında incelenecektir: mekanik temelli sensörler ve modern teknolojilerle geliştirilen sensörler. Derleme makalemizin odağı, piezorezistif basınç sensörleridir; çünkü bu sensörler, yaygın kullanım alanlarının yanı sıra, malzeme ve üretim teknolojilerindeki gelişmelerin ışığında birçok geliştirme çalışmasına konu olarak bugün sahip oldukları üstün özelliklere ulaşmıştır. Sıcaklık değişimlerine karşı direnç göstermeleri, ölçüm sonuçlarının zamana bağlı stabilitesini korumaları, geniş basınç ve sıcaklık aralıklarında kullanılabilir hale gelmeleri, bu sensörlerin öne çıkan niteliklerindendir. Bu sensörlerin fabrikasyon ve tasarım süreçleri, kullanılan malzemeler ve tarihçeleri üzerine kapsamlı bir literatür taraması yapılmıştır. Ayrıca, piezorezistif sensörlerin kullanım alanları ve performansları detaylı bir şekilde incelenmiştir. Bu bilgiler, mühendislerin ve akademisyenlerin basınç sensörü seçimlerini kolaylaştıracak ve çalışmalarını hızlandıracaktır. Makalede, piezorezistif gaz basınç sensörlerinin temel özellikleri, tasarımları ve kullanım alanları ele alınacak, ayrıca gelecekteki gelişmeleri hakkında öngörüler sunulacaktır. Farklı sensör tipleri arasında yapılan kıyaslamalarla, bu sensörlerin çeşitli uygulamalardaki etkileri değerlendirilecektir.

References

  • Z. Xu et al., “An SOI-Structured Piezoresistive Differential Pressure Sensor with High Performance,” Micromachines (Basel), vol. 13, no. 12, Dec. 2022, doi: 10.3390/mi13122250.
  • B. Ganev, D. Nikolov, and M. B. Marinov, “Performance evaluation of MEMS pressure sensors,” in 11th National Conference with International Participation, ELECTRONICA 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Jul. 2020. doi: 10.1109/ELECTRONICA50406.2020.9305140.
  • V. Belwanshi, S. Philip, and A. Topkar, “Performance Study of MEMS Piezoresistive Pressure Sensors at Elevated Temperatures,” IEEE Sens J, vol. 22, no. 10, pp. 9313–9320, May 2022, doi: 10.1109/JSEN.2022.3164435.
  • C. Gao and D. Zhang, “The Establishment and Verification of the Sensitivity Model of the Piezoresistive Pressure Sensor Based on the New Peninsula Structure,” Journal of Microelectromechanical Systems, vol. 31, no. 2, pp. 305–314, Apr. 2022, doi: 10.1109/JMEMS.2022.3150909.
  • R. Gao et al., “Design, Fabrication, and Dynamic Environmental Test of a Piezoresistive Pressure Sensor,” Micromachines (Basel), vol. 13, no. 7, Jul. 2022, doi: 10.3390/mi13071142.
  • Paul Francoletti, “https://blog.ashcroft.com/absolute-vacuum-and-compound-pressure#:~:text=Compound%20pressure%20measures%20both%20positive,is%20applied%20to%20the%20gauge.”
  • L. B. Lambert, “History of measurement and control A history of pressure measurement,” 1979.
  • Instrupaedia, “History of electronic pressure transducers.” Accessed: Jan. 02, 2025. [Online]. Available: https://instrulearning.com/pressure/pressure-transducer-history/
  • “History of MEMS Primary Knowledge Participant Guide.”
  • S. Il Ahn, “High-temperature vacuum pressure sensor using carbon nanotubes,” Mater Lett, vol. 268, Jun. 2020, doi: 10.1016/j.matlet.2020.127643.
  • “Edwards Vacuum - Wikiwand.” Accessed: Jan. 14, 2025. [Online]. Available: https://www.wikiwand.com/en/articles/Edwards_Vacuum
  • W. H. Ko, B.-X. Shao, C. D. Fung, W.-3 Shen, G.-J. Yeh, and B. E. Resource, “CAPACITIVE PRESSURE TRANSDUCERS WITH INTEGRATED CIRCUITS*,” 1983.
  • “Piezoelectric Pressure Sensors | The Design Engineer’s Guide | Avnet Abacus.” Accessed: Jan. 06, 2025. [Online]. Available: https://my.avnet.com/abacus/solutions/technologies/sensors/pressure-sensors/core-technologies/piezoelectric/
  • X. Han et al., “Novel resonant pressure sensor based on piezoresistive detection and symmetrical in-plane mode vibration,” Microsyst Nanoeng, vol. 6, no. 1, Dec. 2020, doi: 10.1038/s41378-020-00207-0.
  • L. Gupta, G. Singh, and V. Pandey, “A study of piezoresistive pressure sensor technology,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2021. doi: 10.1063/5.0039425.
  • W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” 1997. [Online]. Available: http://iopscience.iop.org/0964-1726/6/5/004
  • J. Wang, G. Hu, J. Li, Y. Zhou, C. Zou, and S. M. Jahangir Alam, “Research on Temperature Compensation of Piezo-resistive Pressure Sensor Based on Newton interpolation and Spline interpolation,” in 2021 15th IEEE International Conference on Electronic Measurement and Instruments, ICEMI 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 109–113. doi: 10.1109/ICEMI52946.2021.9679505.
  • S. Meti, K. B. Balavald, and B. G. Sheeparmatti, “MEMS Piezoresistive Pressure Sensor: A Survey,” 2016. [Online].
  • P. Thawornsathit et al., “Mechanical Diaphragm Structure Design of a MEMS-Based Piezoresistive Pressure Sensor for Sensitivity and Linearity Enhancement,” Engineering Journal, vol. 26, no. 5, pp. 43–57, May 2022, doi: 10.4186/ej.2022.26.5.43.
  • Q. Meng, Y. Lu, J. Wang, D. Chen, and J. Chen, “A piezoresistive pressure sensor with optimized positions and thickness of piezoresistors,” Micromachines (Basel), vol. 12, no. 9, Sep. 2021, doi: 10.3390/mi12091095.
  • O. N. Tufte, P. W. Chapman, and D. Long, “Silicon diffused-element piezoresistive diaphragms,” J Appl Phys, vol. 33, no. 11, pp. 3322–3327, 1962, doi: 10.1063/1.1931164.
  • A. A. Barlian, W. T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt, “Review: Semiconductor piezoresistance for microsystems,” 2009, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/JPROC.2009.2013612.
  • SAMAUN, K. D. Wise, and J. B. Angell, “An IC P ezoresistive Pressure Sensor for Biomedical Instrumentation,” Analog Dialogue, 1973.
  • J. Akhtar, B. B. Dixit, B. D. Pant, and V. P. Deshwal, “Polysilicon piezoresistive pressure sensors based on mems technology,” IETE J Res, vol. 49, no. 6, pp. 365–377, 2003, doi: 10.1080/03772063.2003.11416360.
  • K. N. Bhat and M. M. Nayak, “MEMS Pressure Sensors-An Overview of Challenges in Technology and Packaging,” 2012. [Online]. Available: www.isssonline.in/journal/02paper05.pdf
  • M. A. Fraga, H. Furlan, M. Massi, I. C. Oliveira, and L. L. Koberstein, “Fabrication and characterization of a SiC/SiO2/Si piezoresistive pressure sensor,” in Procedia Engineering, Elsevier Ltd, 2010, pp. 609–612. doi: 10.1016/j.proeng.2010.09.183.
  • S. Kurnaz, O. Ozturk, A. H. Mehmet, U. Guduloglu, N. Yilmaz, and O. Cicek, “Flexible capacitive and piezoresistive pressure sensors based on screen-printed parylene C/polyurethane composites in low-pressure range,” Flexible and Printed Electronics, vol. 8, no. 3, Sep. 2023, doi: 10.1088/2058-8585/acf774.
  • P. Li et al., “A Single-Side Micromachined MPa-Scale High-Temperature Pressure Sensor,” Micromachines (Basel), vol. 14, no. 5, May 2023, doi: 10.3390/mi14050981.
  • C. Mo, Z. Tian, and D. Wang, “A Novel High-Performance MXene-Doped Graphene Pressure Sensor,” IEEE Sens J, vol. 24, no. 9, pp. 14059–14067, May 2024, doi: 10.1109/JSEN.2024.3382107.
  • T. Nguyen and T. Dinh, “OPTOELECTRONIC ENHANCEMENT FOR PIEZORESISTIVE PRESSURE SENSOR,” p. 945, 2020.
  • D. Lin, R. Shi, M. Wong, and K. Chau, “Metal-Oxide Thin-Film Transistor for Monolithic Integration with High-Pressure MEMS Pressure Sensor,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Institute of Electrical and Electronics Engineers Inc., 2022, pp. 672–675. doi: 10.1109/MEMS51670.2022.9699551.
  • L. Kaabi, A. Kaabi, J. Sakly, and F. AbdelMalek, “Modelling and analysis of MEMS sensor based on piezoresistive effects,” May 16, 2007. doi: 10.1016/j.msec.2006.06.022.
  • A. Arshak et al., “Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract,” 2005, Elsevier BV. doi: 10.1016/j.medengphy.2004.11.002.
  • A. Rossetti, R. Codeluppi, A. Golfarelli, M. Zagnoni, A. Talamelli, and M. Tartagni, “Design and characterization of polymeric pressure sensors for wireless wind sail monitoring,” Jun. 2011. doi: 10.1016/j.sna.2011.02.033.
  • S. Rodini, S. Genovesi, G. Manara, and F. Costa, “A Pressure Sensor based on Piezoresistive Loaded Electromagnetic Absorber,” in 2022 IEEE 12th International Conference on RFID Technology and Applications, RFID-TA 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 194–196. doi: 10.1109/RFID-TA54958.2022.9923961.
  • Y. Huang, X. Fan, S. C. Chen, and N. Zhao, “Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing,” Mar. 21, 2019, Wiley-VCH Verlag. doi: 10.1002/adfm.201808509.
  • P. Song et al., “A novel piezoresistive MEMS pressure sensors based on temporary bonding technology,” Sensors (Switzerland), vol. 20, no. 2, Jan. 2020, doi: 10.3390/s20020337.
  • B. Tian, H. Shang, and W. Wang, “Research on Temperature Zero Drift of SiC Piezoresistive Pressure Sensor Based on Asymmetric Wheatstone Bridge,” Silikon(2922), Aug. 2021, doi: 10.1007/s12633-021-01330-x/Published.
  • A. Nallathambi, T. Shanmuganantham, and D. Sindhanaiselvi, “Design and Analysis of MEMS based Piezoresistive Pressure sensor for Sensitivity Enhancement,” in Materials Today: Proceedings, Elsevier Ltd, 2018, pp. 1897–1903. doi: 10.1016/j.matpr.2017.11.291.
  • S. Zeng et al., “A Novel High-Temperature Pressure Sensor Based on Graphene Coated by Si3N4,” IEEE Sens J, vol. 23, no. 3, pp. 2008–2013, Feb. 2023, doi: 10.1109/JSEN.2022.3232626.
  • S. S. Kumar and B. D. Pant, “Effect of piezoresistor configuration on output characteristics of piezoresistive pressure sensor: an experimental study,” Microsystem Technologies, vol. 22, no. 4, pp. 709–719, Apr. 2016, doi: 10.1007/s00542-015-2451-5.
  • Z. Niu, Y. L. Zhao, B. Tian, and F. F. Guo, “Comparative Study of a High Pressure Sensor with Rectangular Diaphragm,” Apr. 2013.
  • L. B. Zhao, Y. L. Zhao, and Z. D. Jiang, “Design and fabrication of a piezoresistive pressure sensor for ultra high temperature environment,” J Phys Conf Ser, vol. 48, no. 1, pp. 178–183, Oct. 2006, doi: 10.1088/1742-6596/48/1/033.
  • J. Akhtar, B. B. Dixit, B. D. Pant, and V. P. Deshwal, “Polysilicon piezoresistive pressure sensors based on mems technology,” IETE J Res, vol. 49, no. 6, pp. 365–377, 2003, doi: 10.1080/03772063.2003.11416360.
  • X. Han et al., “Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging,” Dec. 01, 2023, Springer Nature. doi: 10.1038/s41378-023-00620-1.
  • V. Belwanshi, S. Philip, and A. Topkar, “Gamma Radiation Induced Effects on the Performance of Piezoresistive Pressure Sensors Fabricated Using Different Technologies,” IEEE Trans Nucl Sci, vol. 66, no. 9, pp. 2055–2062, Sep. 2019, doi: 10.1109/TNS.2019.2931777.
  • R. H. Krondorfer and Y. K. Kim, “Packaging effect on MEMS pressure sensor performance,” IEEE Transactions on Components and Packaging Technologies, vol. 30, no. 2, pp. 285–293, Jun. 2007, doi: 10.1109/TCAPT.2007.898360.
  • M. Alghrairi, B. A. K. Farhan, H. M. Ridha, S. Mutashar, W. Algriree, and B. M. Sabbar, “Advancing healthcare through piezoresistive pressure sensors: a comprehensive review of biomedical applications and performance metrics,” Sep. 01, 2024, Institute of Physics. doi: 10.1088/2399-6528/ad7d5d.
  • B. Song, F. Li, F. Zhu, and S. liu, “High reliability of piezoresistive pressure sensors by wafer to wafer direct bonding at room temperature,” Sens Actuators A Phys, vol. 364, Dec. 2023, doi: 10.1016/j.sna.2023.114834. [50] S. Büttgenbach, I. Constantinou, A. Dietzel, and M. Leester-Schädel, “Piezoresistive Pressure Sensors,” in Case Studies in Micromechatronics, Springer Berlin Heidelberg, 2020, pp. 21–85. doi: 10.1007/978-3-662-61320-7_2.
  • T. Beutel, M. Leester-Schädel, and M. Sinapius, “Novel Pressure Sensor for Aerospace Purposes.” [Online]. Available: https://www.researchgate.net/publication/225025778
  • Y. Su, K. Ma, X. Mao, M. Liu, and X. Zhang, “Highly Compressible and Sensitive Flexible Piezoresistive Pressure Sensor Based on MWCNTs/Ti3 C2 Tx MXene @ Melamine Foam for Human Gesture Monitoring and Recognition,” Nanomaterials, vol. 12, no. 13, Jul. 2022, doi: 10.3390/nano12132225.

GAS PRESSURE SENSORS FROM PAST TO PRESENT “A REVIEW”

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1622963

Abstract

Our study focuses on gas pressure sensors used in industries, aerospace, HVAC, automotive, and biomedical fields. After discussing the historical development of pressure sensors, the sensors will be examined under two main categories: mechanical-based sensors and sensors developed with modern technologies. The focus of our review article is on piezoresistive pressure sensors, as these sensors have not only widespread applications but have also reached their superior characteristics today due to ongoing developments in materials and manufacturing technologies. Their resistance to temperature variations, stability of measurement results over time, and ability to operate in a wide range of pressure and temperature conditions are some of the key features that make these sensors stand out. A comprehensive literature review has been conducted on the fabrication and design processes of these sensors, the materials used, and their history. Additionally, the applications and performances of piezoresistive sensors have been thoroughly analyzed. This information will facilitate pressure sensor selection for engineers and academics, accelerating their work. The paper will cover the basic features, designs, and applications of piezoresistive gas pressure sensors, as well as provide insights into future developments. By comparing different sensor types, the impacts of these sensors in various applications will be evaluated.

References

  • Z. Xu et al., “An SOI-Structured Piezoresistive Differential Pressure Sensor with High Performance,” Micromachines (Basel), vol. 13, no. 12, Dec. 2022, doi: 10.3390/mi13122250.
  • B. Ganev, D. Nikolov, and M. B. Marinov, “Performance evaluation of MEMS pressure sensors,” in 11th National Conference with International Participation, ELECTRONICA 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Jul. 2020. doi: 10.1109/ELECTRONICA50406.2020.9305140.
  • V. Belwanshi, S. Philip, and A. Topkar, “Performance Study of MEMS Piezoresistive Pressure Sensors at Elevated Temperatures,” IEEE Sens J, vol. 22, no. 10, pp. 9313–9320, May 2022, doi: 10.1109/JSEN.2022.3164435.
  • C. Gao and D. Zhang, “The Establishment and Verification of the Sensitivity Model of the Piezoresistive Pressure Sensor Based on the New Peninsula Structure,” Journal of Microelectromechanical Systems, vol. 31, no. 2, pp. 305–314, Apr. 2022, doi: 10.1109/JMEMS.2022.3150909.
  • R. Gao et al., “Design, Fabrication, and Dynamic Environmental Test of a Piezoresistive Pressure Sensor,” Micromachines (Basel), vol. 13, no. 7, Jul. 2022, doi: 10.3390/mi13071142.
  • Paul Francoletti, “https://blog.ashcroft.com/absolute-vacuum-and-compound-pressure#:~:text=Compound%20pressure%20measures%20both%20positive,is%20applied%20to%20the%20gauge.”
  • L. B. Lambert, “History of measurement and control A history of pressure measurement,” 1979.
  • Instrupaedia, “History of electronic pressure transducers.” Accessed: Jan. 02, 2025. [Online]. Available: https://instrulearning.com/pressure/pressure-transducer-history/
  • “History of MEMS Primary Knowledge Participant Guide.”
  • S. Il Ahn, “High-temperature vacuum pressure sensor using carbon nanotubes,” Mater Lett, vol. 268, Jun. 2020, doi: 10.1016/j.matlet.2020.127643.
  • “Edwards Vacuum - Wikiwand.” Accessed: Jan. 14, 2025. [Online]. Available: https://www.wikiwand.com/en/articles/Edwards_Vacuum
  • W. H. Ko, B.-X. Shao, C. D. Fung, W.-3 Shen, G.-J. Yeh, and B. E. Resource, “CAPACITIVE PRESSURE TRANSDUCERS WITH INTEGRATED CIRCUITS*,” 1983.
  • “Piezoelectric Pressure Sensors | The Design Engineer’s Guide | Avnet Abacus.” Accessed: Jan. 06, 2025. [Online]. Available: https://my.avnet.com/abacus/solutions/technologies/sensors/pressure-sensors/core-technologies/piezoelectric/
  • X. Han et al., “Novel resonant pressure sensor based on piezoresistive detection and symmetrical in-plane mode vibration,” Microsyst Nanoeng, vol. 6, no. 1, Dec. 2020, doi: 10.1038/s41378-020-00207-0.
  • L. Gupta, G. Singh, and V. Pandey, “A study of piezoresistive pressure sensor technology,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2021. doi: 10.1063/5.0039425.
  • W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” 1997. [Online]. Available: http://iopscience.iop.org/0964-1726/6/5/004
  • J. Wang, G. Hu, J. Li, Y. Zhou, C. Zou, and S. M. Jahangir Alam, “Research on Temperature Compensation of Piezo-resistive Pressure Sensor Based on Newton interpolation and Spline interpolation,” in 2021 15th IEEE International Conference on Electronic Measurement and Instruments, ICEMI 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 109–113. doi: 10.1109/ICEMI52946.2021.9679505.
  • S. Meti, K. B. Balavald, and B. G. Sheeparmatti, “MEMS Piezoresistive Pressure Sensor: A Survey,” 2016. [Online].
  • P. Thawornsathit et al., “Mechanical Diaphragm Structure Design of a MEMS-Based Piezoresistive Pressure Sensor for Sensitivity and Linearity Enhancement,” Engineering Journal, vol. 26, no. 5, pp. 43–57, May 2022, doi: 10.4186/ej.2022.26.5.43.
  • Q. Meng, Y. Lu, J. Wang, D. Chen, and J. Chen, “A piezoresistive pressure sensor with optimized positions and thickness of piezoresistors,” Micromachines (Basel), vol. 12, no. 9, Sep. 2021, doi: 10.3390/mi12091095.
  • O. N. Tufte, P. W. Chapman, and D. Long, “Silicon diffused-element piezoresistive diaphragms,” J Appl Phys, vol. 33, no. 11, pp. 3322–3327, 1962, doi: 10.1063/1.1931164.
  • A. A. Barlian, W. T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt, “Review: Semiconductor piezoresistance for microsystems,” 2009, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/JPROC.2009.2013612.
  • SAMAUN, K. D. Wise, and J. B. Angell, “An IC P ezoresistive Pressure Sensor for Biomedical Instrumentation,” Analog Dialogue, 1973.
  • J. Akhtar, B. B. Dixit, B. D. Pant, and V. P. Deshwal, “Polysilicon piezoresistive pressure sensors based on mems technology,” IETE J Res, vol. 49, no. 6, pp. 365–377, 2003, doi: 10.1080/03772063.2003.11416360.
  • K. N. Bhat and M. M. Nayak, “MEMS Pressure Sensors-An Overview of Challenges in Technology and Packaging,” 2012. [Online]. Available: www.isssonline.in/journal/02paper05.pdf
  • M. A. Fraga, H. Furlan, M. Massi, I. C. Oliveira, and L. L. Koberstein, “Fabrication and characterization of a SiC/SiO2/Si piezoresistive pressure sensor,” in Procedia Engineering, Elsevier Ltd, 2010, pp. 609–612. doi: 10.1016/j.proeng.2010.09.183.
  • S. Kurnaz, O. Ozturk, A. H. Mehmet, U. Guduloglu, N. Yilmaz, and O. Cicek, “Flexible capacitive and piezoresistive pressure sensors based on screen-printed parylene C/polyurethane composites in low-pressure range,” Flexible and Printed Electronics, vol. 8, no. 3, Sep. 2023, doi: 10.1088/2058-8585/acf774.
  • P. Li et al., “A Single-Side Micromachined MPa-Scale High-Temperature Pressure Sensor,” Micromachines (Basel), vol. 14, no. 5, May 2023, doi: 10.3390/mi14050981.
  • C. Mo, Z. Tian, and D. Wang, “A Novel High-Performance MXene-Doped Graphene Pressure Sensor,” IEEE Sens J, vol. 24, no. 9, pp. 14059–14067, May 2024, doi: 10.1109/JSEN.2024.3382107.
  • T. Nguyen and T. Dinh, “OPTOELECTRONIC ENHANCEMENT FOR PIEZORESISTIVE PRESSURE SENSOR,” p. 945, 2020.
  • D. Lin, R. Shi, M. Wong, and K. Chau, “Metal-Oxide Thin-Film Transistor for Monolithic Integration with High-Pressure MEMS Pressure Sensor,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Institute of Electrical and Electronics Engineers Inc., 2022, pp. 672–675. doi: 10.1109/MEMS51670.2022.9699551.
  • L. Kaabi, A. Kaabi, J. Sakly, and F. AbdelMalek, “Modelling and analysis of MEMS sensor based on piezoresistive effects,” May 16, 2007. doi: 10.1016/j.msec.2006.06.022.
  • A. Arshak et al., “Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract,” 2005, Elsevier BV. doi: 10.1016/j.medengphy.2004.11.002.
  • A. Rossetti, R. Codeluppi, A. Golfarelli, M. Zagnoni, A. Talamelli, and M. Tartagni, “Design and characterization of polymeric pressure sensors for wireless wind sail monitoring,” Jun. 2011. doi: 10.1016/j.sna.2011.02.033.
  • S. Rodini, S. Genovesi, G. Manara, and F. Costa, “A Pressure Sensor based on Piezoresistive Loaded Electromagnetic Absorber,” in 2022 IEEE 12th International Conference on RFID Technology and Applications, RFID-TA 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 194–196. doi: 10.1109/RFID-TA54958.2022.9923961.
  • Y. Huang, X. Fan, S. C. Chen, and N. Zhao, “Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing,” Mar. 21, 2019, Wiley-VCH Verlag. doi: 10.1002/adfm.201808509.
  • P. Song et al., “A novel piezoresistive MEMS pressure sensors based on temporary bonding technology,” Sensors (Switzerland), vol. 20, no. 2, Jan. 2020, doi: 10.3390/s20020337.
  • B. Tian, H. Shang, and W. Wang, “Research on Temperature Zero Drift of SiC Piezoresistive Pressure Sensor Based on Asymmetric Wheatstone Bridge,” Silikon(2922), Aug. 2021, doi: 10.1007/s12633-021-01330-x/Published.
  • A. Nallathambi, T. Shanmuganantham, and D. Sindhanaiselvi, “Design and Analysis of MEMS based Piezoresistive Pressure sensor for Sensitivity Enhancement,” in Materials Today: Proceedings, Elsevier Ltd, 2018, pp. 1897–1903. doi: 10.1016/j.matpr.2017.11.291.
  • S. Zeng et al., “A Novel High-Temperature Pressure Sensor Based on Graphene Coated by Si3N4,” IEEE Sens J, vol. 23, no. 3, pp. 2008–2013, Feb. 2023, doi: 10.1109/JSEN.2022.3232626.
  • S. S. Kumar and B. D. Pant, “Effect of piezoresistor configuration on output characteristics of piezoresistive pressure sensor: an experimental study,” Microsystem Technologies, vol. 22, no. 4, pp. 709–719, Apr. 2016, doi: 10.1007/s00542-015-2451-5.
  • Z. Niu, Y. L. Zhao, B. Tian, and F. F. Guo, “Comparative Study of a High Pressure Sensor with Rectangular Diaphragm,” Apr. 2013.
  • L. B. Zhao, Y. L. Zhao, and Z. D. Jiang, “Design and fabrication of a piezoresistive pressure sensor for ultra high temperature environment,” J Phys Conf Ser, vol. 48, no. 1, pp. 178–183, Oct. 2006, doi: 10.1088/1742-6596/48/1/033.
  • J. Akhtar, B. B. Dixit, B. D. Pant, and V. P. Deshwal, “Polysilicon piezoresistive pressure sensors based on mems technology,” IETE J Res, vol. 49, no. 6, pp. 365–377, 2003, doi: 10.1080/03772063.2003.11416360.
  • X. Han et al., “Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging,” Dec. 01, 2023, Springer Nature. doi: 10.1038/s41378-023-00620-1.
  • V. Belwanshi, S. Philip, and A. Topkar, “Gamma Radiation Induced Effects on the Performance of Piezoresistive Pressure Sensors Fabricated Using Different Technologies,” IEEE Trans Nucl Sci, vol. 66, no. 9, pp. 2055–2062, Sep. 2019, doi: 10.1109/TNS.2019.2931777.
  • R. H. Krondorfer and Y. K. Kim, “Packaging effect on MEMS pressure sensor performance,” IEEE Transactions on Components and Packaging Technologies, vol. 30, no. 2, pp. 285–293, Jun. 2007, doi: 10.1109/TCAPT.2007.898360.
  • M. Alghrairi, B. A. K. Farhan, H. M. Ridha, S. Mutashar, W. Algriree, and B. M. Sabbar, “Advancing healthcare through piezoresistive pressure sensors: a comprehensive review of biomedical applications and performance metrics,” Sep. 01, 2024, Institute of Physics. doi: 10.1088/2399-6528/ad7d5d.
  • B. Song, F. Li, F. Zhu, and S. liu, “High reliability of piezoresistive pressure sensors by wafer to wafer direct bonding at room temperature,” Sens Actuators A Phys, vol. 364, Dec. 2023, doi: 10.1016/j.sna.2023.114834. [50] S. Büttgenbach, I. Constantinou, A. Dietzel, and M. Leester-Schädel, “Piezoresistive Pressure Sensors,” in Case Studies in Micromechatronics, Springer Berlin Heidelberg, 2020, pp. 21–85. doi: 10.1007/978-3-662-61320-7_2.
  • T. Beutel, M. Leester-Schädel, and M. Sinapius, “Novel Pressure Sensor for Aerospace Purposes.” [Online]. Available: https://www.researchgate.net/publication/225025778
  • Y. Su, K. Ma, X. Mao, M. Liu, and X. Zhang, “Highly Compressible and Sensitive Flexible Piezoresistive Pressure Sensor Based on MWCNTs/Ti3 C2 Tx MXene @ Melamine Foam for Human Gesture Monitoring and Recognition,” Nanomaterials, vol. 12, no. 13, Jul. 2022, doi: 10.3390/nano12132225.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Analog Electronics and Interfaces, Electronic Sensors, Microelectronics, Microelectromechanical Systems (Mems)
Journal Section Tasarım ve Teknoloji
Authors

Yasin Arslan 0009-0001-4524-8806

Early Pub Date August 14, 2025
Publication Date
Submission Date January 19, 2025
Acceptance Date May 18, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Arslan, Y. (2025). GEÇMİŞTEN GÜNÜMÜZE GAZ BASINÇ SENSÖRLERİ “BİR DERLEME”. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3). https://doi.org/10.29109/gujsc.1622963

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526