Research Article
BibTex RIS Cite

Investigation of Physical, Mechanical and Tribological Properties of Blast Furnace Dust Reinforced Bronze Matrix Composite Brake Pads

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1643160

Abstract

This research aims to investigate the usability of Blast Furnace Dust (BFD), an industrial waste material, as a reinforcing element in metal matrix composite brake pads and the effects of BFD reinforcement on the brake pad's tribological, physical, and mechanical properties. For this purpose, the initial step produced a bronze matrix composite brake pad sample, designated as the reference sample, using the hot pressing method. In the second stage, four different new bronze matrix brake pad samples were produced by reinforcing the reference bronze matrix brake pad sample with various BFD contents (2%, 4%, 6%, and 8% by weight.) Density, hardness, transverse rupture strength (TRS), average friction coefficient, friction coefficient stability, and specific wear rate values of produced samples were determined. Microstructure and wear surfaces of produced samples were characterized by using a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The obtained results demonstrated that the density of the produced samples decreased depending on the increase in the BFD reinforcement ratio by weight, whereas the hardness increased. An increased trend was observed in the average friction coefficient values of the samples up to 6% BFD reinforcement ratio, and the maximum average friction coefficient value was determined as 0.475 at this reinforcement ratio. In addition, it was determined that the brake pad sample with 8% BFD reinforcement showed a specific wear value approximately 53.31% lower than the reference sample. When the obtained data were evaluated, it was seen that the increasing BFD reinforcement ratio contributed positively to the wear resistance development of the brake pad samples. This study showed that BFD, which occurs as an industrial by-product, can be used as a low-cost alternative instead of synthetic materials in brake pad production without compromising the brake performance quality.

Supporting Institution

TÜBİTAK BİDEB

Project Number

122C219

Thanks

Bu çalışma, TÜBİTAK BİDEB 2218 Ulusal Doktora Sonrası Araştırma Burs Programı (Proje Numarası 122C219) kapsamında desteklenmiştir.

References

  • [1] H. Zhou, P. Yao, T. Gong, Y. Xiao, Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites, Tribology International, 138 (2019) 380-391.
  • [2] C. Kar, B. Surekha, Effect of red mud and TiC on friction and wear characteristics of Al 7075 metal matrix composites, Australian Journal of Mechanical Engineering, 20:1 (2019) 14-23.
  • [3] K. I. Kim, H. Lee, J. Kim, K. H. Oh, K. T. Kim, Wear Behavior of Commercial Copper-Based Aircraft Brake Pads Fabricated under Different SPS Conditions, Crystals, 11:11 (2021).
  • [4] F. S. Hamid, O. A. Elkady, A. R. S. Essa, A. El-Nikhaily, A. Elsayed, A. K. Eessaa, Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-Matrix, Crystals, 11:9 (2021).
  • [5] R. Nithesh, N. Radhika, S. Shiam Sunder, Mechanical Properties and Adhesive Scuffing Wear Behavior of Stir Cast Cu–Sn–Ni/Si3N4 Composites, Journal of Tribology, 139:6 (2017).
  • [6] N. Yavuz, R. Ertan, Polimer Matrisli Fren Balata Malzemelerinin Kompozisyon ve Üretim Paremetreleri Acısından Değerlendirilmesi, Mühendis ve Makine, 47:553 (2005) 24-30.
  • [7] S. H. Gawande, V. N. Raibhole, A. S. Banait, Study on Tribological Investigations of Alternative Automotive Brake Pad Materials, J Bio Tribo Corros, 6:3 (2020).
  • [8] M. Boz, A. Kurt, The effect of Al2O3 on the friction performance of automotive brake friction materials, Tribology International, 40:7 (2007) 1161-1169.
  • [9] M. Khafidh, F. P. Putera, R. Yotenka, D. F. Fitriyana, R. D. Widodo, R. Ismail, A. P. Irawan, T. Cionita, J. P. Siregar, N. H. Ismail, A Study on Characteristics of Brake Pad Composite Materials by Varying the Composition of Epoxy, Rice Husk, Al2O3, and Fe2O3, AE, 6:2 (2023) 303-319. [10] G. Cui, J. Ren, Z. Lu, The Microstructure and Wear Characteristics of Cu–Fe Matrix Friction Material with Addition of SiC, Tribol Lett, 65:3 (2017).
  • [11] X. Xiong, J. Chen, P. Yao, S. Li, B. Huang, Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials, Wear, 262:9-10 (2007) 1182-1186.
  • [12] T. Peng, Q. Yan, X. Zhang, Y. Zhuang, Role of titanium carbide and alumina on the friction increment for Cu-based metallic brake pads under different initial braking speeds, Friction, 9:6 (2020) 1543-1557.
  • [13] M. Boz, A. Kurt, Effect of ZrSiO4 on the friction performance of automotive brake friction materials, Journal of materials science & technology, 23:6 (2007) 843-850.
  • [14] Yu-nan Tian, Z. Dou, L. Niu, T. Zhang, Effects of Titanium Nitride Particles on Copper Matrix-Graphite Composite Properties, Russ. J. Non-ferrous Metals, 61:3 (2020) 387-395.
  • [15] S. C. Tjong, K. C. Lau, Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites, Materials Science and Engineering: A, 282:1-2 (2000) 183-186.
  • [16] A. M. Desai, T. R. Paul, M. Mallik, Mechanical properties and wear behavior of fly ash particle reinforced Al matrix composites, Mater. Res. Express, 7:1 (2020).
  • [17] A. Bahrami, N. Soltani, M. I. Pech-Canul, C. A. Gutiérrez, Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives, Critical Reviews in Environmental Science and Technology, 46:2 (2015) 143-208.
  • [18] J. Xu, N. Wang, M. Chen, Z. Zhou, H. Yu, Comparative investigation on the reduction behavior of blast furnace dust particles during in-flight process in hydrogen-rich and carbon monoxide atmospheres, Powder Technology, 366 (2020) 709-721.
  • [19] M. T. Kayili, G. Çelebi̇, A. Güldaş, Sürdürülebilir Yapı Malzemesi Hedefiyle Demir Çelik ve Plastik Endüstrisi Atıklarının Geri Kazanımı, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33:2 (2018) 33-44.
  • [20] D. Zhao, J. Zhang, G. Wang, A. N. Conejo, R. Xu, H. Wang, J. Zhong, Structure Characteristics and Combustibility of Carbonaceous Materials from Blast Furnace Flue Dust, Applied Thermal Engineering, 108:5 (2016) 1168-1177.
  • [21] C. Lanzerstorfer, M. Kröppl, Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process, Resources, Conservation and Recycling, 86 (2014) 132-137.
  • [22] M. Tuna Kayili, G. Çelebi, A. Guldas, Morphological, mechanical, thermal and tribological properties of environmentally friendly construction materials: recycled LDPE composites fılled by blast furnace dust, Journal of Green Building, 15:3 (2020) 159-175.
  • [23] Ş. Bülbül, Farklı inorganik ve organik dolguların nr/sbr tipi elastomer malzemelerin mekanik özellikleri üzerindeki etkisi, Karabük Üniversitesi, Fen Bilimleri Enstitüsü, İmalat Mühendisliği Anabilim Dalı, Karabük, 2014.
  • [24] P. J. Blau, Compositions, Functions, and Testing of Friction Brake Materials and Their Additives, Oak Ridge National Laboratory, 2001.
  • [25] Y. Zhong, X. Qiu, J. Gao, Z. Guo, Structural Characterization of Carbon in Blast Furnace Flue Dust and Its Reactivity in Combustion, Energy Fuels, 31:8 (2017) 8415-8422.
  • [26] H. Kuş, A. Avcu, İ. Sugözü, Red Mud Ratio Effects on the Tribological Performance of Fly-Ash-Reinforced Bronze Matrix Brake Pad Material, J. of Materi Eng and Perform, (2024).
  • [27] H. Çinici, H. Karakoç, Ö. Şahin, İ. Ovalı, Investigation of microstructure, mechanical, and tribological properties of SiC/h-BN/Gr hybrid reinforced Al6061 matrix composites produced by hot extrusion method, Diamond and Related Materials, 136 (2023).
  • [28] J. Fischer, B. Stawarczyk, C. H. F. Hämmerle, Flexural strength of veneering ceramics for zirconia, Journal of Dentistry, 36:5 (2008) 316-321.
  • [29] İ. Sugözü, B. Sugözü, Investigation of The Effect of Solid Lubricant Particle Sizes on Friction and Wear Properties in Friction Composites: An Experimental Case Study with Graphite, International Journal of Automotive Science and Technology, 5:3 (2021) 179-183.
  • [30] İ. Sugözü, K. Kahya, Investigation of the Effect on Tribological Properties of the use of Pinus Brutia Cone as a Binder in Brake Pads, European Mechanical Science, 2:4 (2018) 115-118.
  • [31] A. Avcu, H. Kuş, İ. Sugözü, Application of the MULTIMOORA Method to Evaluate Performance Results of Red Mud Reinforced Bronze Matrix Brake Pads, 8:4 (2024) 419-430. .
  • [32] İ. Sugözü, B. Sugözü, Friction and Wear Properties of Automobile Brake Linings Containing Borax Powder with Different Grain Sizes, International Journal of Automotive Science And Technology, 5:3 (2021) 224-227.
  • [33] J. Bijwe, N. Aranganathan, S. Sharma, N. Dureja, ve R. Kumar, Nano-abrasives in friction materials-influence on tribological properties, Wear, 296:1-2 (2012) 693-701.
  • [34] S. Şap, Ü. A. Usca, M. Uzun, K. Giasin, D. Y. Pimenov, Development of the hardness, three-point bending, and wear behavior of self-lubricating Cu-5Gr/Al2O3-Cr3C2 hybrid composites, Journal of Composite Materials, 57:8 (2023) 1395-1409.
  • [35] S. Islak, C. Özorak, N. M. E. Abouacha, U. Çalıgülü, V. Koç, Ö. Küçük, The effects of the CNF ratio on the microstructure, corrosion, and mechanical properties of CNF-reinforced diamond cutting tool, Diamond and Related Materials, 119 (2021).
  • [36] F. Okay, S. Islak, Microstructure and mechanical properties of aluminium matrix boron carbide and carbon nanofiber reinforced hybrid composites, Sci Sintering, 54:2 (2022)125-138, 2022.
  • [37] H. Kus ve D. Altiparmak, Effect of glass powder on the friction performance of automotive brake lining materials, Sci Sintering, 55:2 (2023) 159-170.
  • [38] K. E. Oksuz, Tribological behaviour of Al2014–Al2O3 particle- reinforced composites produced by powder metallurgy method, Journal of the Balkan Tribological Association, 19:2 (2013) 190-201.
  • [39] H. Karakoç, Effect of SiC Particle Size on the Mechanical and Wear Behavior of Al356 Metal Matrix Composites, Silicon, 15:15 (2023) 6729-6744.
  • [40] K. P. Boyle, The role of particle cracking in dilatation during tensile straining of a cast and thermomechanically processed 6061 Al - 20 volume percent Al2O3 metal matrix composite, Naval postgraduate school, Mechanical engineering, 1996.
  • [41] P. Zhang, L. Zhang, D. Wei, P. Wu, J. Cao, C. Shijia,X. Qu, K. Fu, Effect of graphite type on the contact plateaus and friction properties of copper-based friction material for high-speed railway train, Wear, (2019) 432-433.
  • [42] J. Bijwe, M. Kumar, Optimization of steel wool contents in non-asbestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance, Wear, 263: 7-12 (2007) 1243-1248. [43] M. H. Cho, J. Ju, S. J. Kim, H. Jang, Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials, Wear, 260:7-8 (2006) 855-860.
  • [44] M. Eriksson, S. Jacobson, Tribological surfaces of organic brake pads, Tribology International, 33:12 (2000) 817-827.

Yüksek Fırın Baca Tozu Takviyeli Bronz Matrisli Kompozit Fren Balata Malzemelerin Fiziksel, Mekanik ve Tribolojik Özelliklerinin İncelenmesi

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1643160

Abstract

Bu çalışma, endüstriyel atık bir malzeme olan yüksek fırın baca tozunun (BFD) metal matrisli kompozit fren balatalarında takviye elemanı olarak kullanılabilirliğini ve BFD takviyesinin fren balatasının tribolojik, fiziksel ve mekanik özellikleri üzerine etkilerini incelemeyi amaçlamaktadır. Bu amaç doğrultusunda, ilk aşamada sıcak presleme yöntemi kullanılarak referans numune olarak adlandırılan bronz matrisli kompozit fren balata numunesi üretildi. İkinci aşamada, referans bronz matrisli fren balata numunesi ağırlıkça farklı oranlarda BFD ile (%2, %4, %6 ve %8) takviye edilerek dört farklı yeni bronz matrisli fren balata numuneleri üretilmiştir. Üretilen bu numunelerinin yoğunluk, sertlik, çapraz kırılma dayanımı (TRS), ortalama sürtünme katsayısı, sürtünme katsayı kararlılığı ve özgül aşınma oranı değerleri belirlenmiştir. Üretilen numunelerin mikro yapısı ve aşınma yüzeyleri taramalı elektron mikroskobu (SEM) ve enerji dağılımlı X-ışını spektroskopisi (EDX) kullanılarak karakterize edildi. Elde edilen sonuçlar, fren balata numunesindeki ağırlıkça BFD takviye oranı artışına bağlı olarak üretilen numunelerin yoğunluğunun azaldığını, buna karşın sertliğinin arttığını göstermiştir. Üretilen numunelerin ortalama sürtünme katsayı değerlerinde %6 BFD takviye oranına kadar artma eğilimi görülmüş ve bu takviye oranında 0.475 ile maksimum ortalama sürtünme katsayı değeri tespit edilmiştir. Ayrıca, referans numuneye göre %8 BFD takviyeli fren balata numunesinin yaklaşık %53.31 oranında daha düşük bir özgül aşınma değeri gösterdiği belirlenmiştir. Elde edilen veriler değerlendirildiğinde, artan BFD takviye oranının fren balata numunelerinin aşınma direncinin gelişmesinde olumlu yönde katkı sağladığı görülmüştür. Bu çalışma, endüstriyel bir yan ürün olarak ortaya çıkan BFD’nin fren balata üretiminde fren performans kalitesinden ödün vermeden sentetik malzemeler yerine düşük maliyetli bir alternatif olarak kullanılabileceğini göstermiştir.

Project Number

122C219

References

  • [1] H. Zhou, P. Yao, T. Gong, Y. Xiao, Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites, Tribology International, 138 (2019) 380-391.
  • [2] C. Kar, B. Surekha, Effect of red mud and TiC on friction and wear characteristics of Al 7075 metal matrix composites, Australian Journal of Mechanical Engineering, 20:1 (2019) 14-23.
  • [3] K. I. Kim, H. Lee, J. Kim, K. H. Oh, K. T. Kim, Wear Behavior of Commercial Copper-Based Aircraft Brake Pads Fabricated under Different SPS Conditions, Crystals, 11:11 (2021).
  • [4] F. S. Hamid, O. A. Elkady, A. R. S. Essa, A. El-Nikhaily, A. Elsayed, A. K. Eessaa, Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-Matrix, Crystals, 11:9 (2021).
  • [5] R. Nithesh, N. Radhika, S. Shiam Sunder, Mechanical Properties and Adhesive Scuffing Wear Behavior of Stir Cast Cu–Sn–Ni/Si3N4 Composites, Journal of Tribology, 139:6 (2017).
  • [6] N. Yavuz, R. Ertan, Polimer Matrisli Fren Balata Malzemelerinin Kompozisyon ve Üretim Paremetreleri Acısından Değerlendirilmesi, Mühendis ve Makine, 47:553 (2005) 24-30.
  • [7] S. H. Gawande, V. N. Raibhole, A. S. Banait, Study on Tribological Investigations of Alternative Automotive Brake Pad Materials, J Bio Tribo Corros, 6:3 (2020).
  • [8] M. Boz, A. Kurt, The effect of Al2O3 on the friction performance of automotive brake friction materials, Tribology International, 40:7 (2007) 1161-1169.
  • [9] M. Khafidh, F. P. Putera, R. Yotenka, D. F. Fitriyana, R. D. Widodo, R. Ismail, A. P. Irawan, T. Cionita, J. P. Siregar, N. H. Ismail, A Study on Characteristics of Brake Pad Composite Materials by Varying the Composition of Epoxy, Rice Husk, Al2O3, and Fe2O3, AE, 6:2 (2023) 303-319. [10] G. Cui, J. Ren, Z. Lu, The Microstructure and Wear Characteristics of Cu–Fe Matrix Friction Material with Addition of SiC, Tribol Lett, 65:3 (2017).
  • [11] X. Xiong, J. Chen, P. Yao, S. Li, B. Huang, Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials, Wear, 262:9-10 (2007) 1182-1186.
  • [12] T. Peng, Q. Yan, X. Zhang, Y. Zhuang, Role of titanium carbide and alumina on the friction increment for Cu-based metallic brake pads under different initial braking speeds, Friction, 9:6 (2020) 1543-1557.
  • [13] M. Boz, A. Kurt, Effect of ZrSiO4 on the friction performance of automotive brake friction materials, Journal of materials science & technology, 23:6 (2007) 843-850.
  • [14] Yu-nan Tian, Z. Dou, L. Niu, T. Zhang, Effects of Titanium Nitride Particles on Copper Matrix-Graphite Composite Properties, Russ. J. Non-ferrous Metals, 61:3 (2020) 387-395.
  • [15] S. C. Tjong, K. C. Lau, Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites, Materials Science and Engineering: A, 282:1-2 (2000) 183-186.
  • [16] A. M. Desai, T. R. Paul, M. Mallik, Mechanical properties and wear behavior of fly ash particle reinforced Al matrix composites, Mater. Res. Express, 7:1 (2020).
  • [17] A. Bahrami, N. Soltani, M. I. Pech-Canul, C. A. Gutiérrez, Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives, Critical Reviews in Environmental Science and Technology, 46:2 (2015) 143-208.
  • [18] J. Xu, N. Wang, M. Chen, Z. Zhou, H. Yu, Comparative investigation on the reduction behavior of blast furnace dust particles during in-flight process in hydrogen-rich and carbon monoxide atmospheres, Powder Technology, 366 (2020) 709-721.
  • [19] M. T. Kayili, G. Çelebi̇, A. Güldaş, Sürdürülebilir Yapı Malzemesi Hedefiyle Demir Çelik ve Plastik Endüstrisi Atıklarının Geri Kazanımı, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33:2 (2018) 33-44.
  • [20] D. Zhao, J. Zhang, G. Wang, A. N. Conejo, R. Xu, H. Wang, J. Zhong, Structure Characteristics and Combustibility of Carbonaceous Materials from Blast Furnace Flue Dust, Applied Thermal Engineering, 108:5 (2016) 1168-1177.
  • [21] C. Lanzerstorfer, M. Kröppl, Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process, Resources, Conservation and Recycling, 86 (2014) 132-137.
  • [22] M. Tuna Kayili, G. Çelebi, A. Guldas, Morphological, mechanical, thermal and tribological properties of environmentally friendly construction materials: recycled LDPE composites fılled by blast furnace dust, Journal of Green Building, 15:3 (2020) 159-175.
  • [23] Ş. Bülbül, Farklı inorganik ve organik dolguların nr/sbr tipi elastomer malzemelerin mekanik özellikleri üzerindeki etkisi, Karabük Üniversitesi, Fen Bilimleri Enstitüsü, İmalat Mühendisliği Anabilim Dalı, Karabük, 2014.
  • [24] P. J. Blau, Compositions, Functions, and Testing of Friction Brake Materials and Their Additives, Oak Ridge National Laboratory, 2001.
  • [25] Y. Zhong, X. Qiu, J. Gao, Z. Guo, Structural Characterization of Carbon in Blast Furnace Flue Dust and Its Reactivity in Combustion, Energy Fuels, 31:8 (2017) 8415-8422.
  • [26] H. Kuş, A. Avcu, İ. Sugözü, Red Mud Ratio Effects on the Tribological Performance of Fly-Ash-Reinforced Bronze Matrix Brake Pad Material, J. of Materi Eng and Perform, (2024).
  • [27] H. Çinici, H. Karakoç, Ö. Şahin, İ. Ovalı, Investigation of microstructure, mechanical, and tribological properties of SiC/h-BN/Gr hybrid reinforced Al6061 matrix composites produced by hot extrusion method, Diamond and Related Materials, 136 (2023).
  • [28] J. Fischer, B. Stawarczyk, C. H. F. Hämmerle, Flexural strength of veneering ceramics for zirconia, Journal of Dentistry, 36:5 (2008) 316-321.
  • [29] İ. Sugözü, B. Sugözü, Investigation of The Effect of Solid Lubricant Particle Sizes on Friction and Wear Properties in Friction Composites: An Experimental Case Study with Graphite, International Journal of Automotive Science and Technology, 5:3 (2021) 179-183.
  • [30] İ. Sugözü, K. Kahya, Investigation of the Effect on Tribological Properties of the use of Pinus Brutia Cone as a Binder in Brake Pads, European Mechanical Science, 2:4 (2018) 115-118.
  • [31] A. Avcu, H. Kuş, İ. Sugözü, Application of the MULTIMOORA Method to Evaluate Performance Results of Red Mud Reinforced Bronze Matrix Brake Pads, 8:4 (2024) 419-430. .
  • [32] İ. Sugözü, B. Sugözü, Friction and Wear Properties of Automobile Brake Linings Containing Borax Powder with Different Grain Sizes, International Journal of Automotive Science And Technology, 5:3 (2021) 224-227.
  • [33] J. Bijwe, N. Aranganathan, S. Sharma, N. Dureja, ve R. Kumar, Nano-abrasives in friction materials-influence on tribological properties, Wear, 296:1-2 (2012) 693-701.
  • [34] S. Şap, Ü. A. Usca, M. Uzun, K. Giasin, D. Y. Pimenov, Development of the hardness, three-point bending, and wear behavior of self-lubricating Cu-5Gr/Al2O3-Cr3C2 hybrid composites, Journal of Composite Materials, 57:8 (2023) 1395-1409.
  • [35] S. Islak, C. Özorak, N. M. E. Abouacha, U. Çalıgülü, V. Koç, Ö. Küçük, The effects of the CNF ratio on the microstructure, corrosion, and mechanical properties of CNF-reinforced diamond cutting tool, Diamond and Related Materials, 119 (2021).
  • [36] F. Okay, S. Islak, Microstructure and mechanical properties of aluminium matrix boron carbide and carbon nanofiber reinforced hybrid composites, Sci Sintering, 54:2 (2022)125-138, 2022.
  • [37] H. Kus ve D. Altiparmak, Effect of glass powder on the friction performance of automotive brake lining materials, Sci Sintering, 55:2 (2023) 159-170.
  • [38] K. E. Oksuz, Tribological behaviour of Al2014–Al2O3 particle- reinforced composites produced by powder metallurgy method, Journal of the Balkan Tribological Association, 19:2 (2013) 190-201.
  • [39] H. Karakoç, Effect of SiC Particle Size on the Mechanical and Wear Behavior of Al356 Metal Matrix Composites, Silicon, 15:15 (2023) 6729-6744.
  • [40] K. P. Boyle, The role of particle cracking in dilatation during tensile straining of a cast and thermomechanically processed 6061 Al - 20 volume percent Al2O3 metal matrix composite, Naval postgraduate school, Mechanical engineering, 1996.
  • [41] P. Zhang, L. Zhang, D. Wei, P. Wu, J. Cao, C. Shijia,X. Qu, K. Fu, Effect of graphite type on the contact plateaus and friction properties of copper-based friction material for high-speed railway train, Wear, (2019) 432-433.
  • [42] J. Bijwe, M. Kumar, Optimization of steel wool contents in non-asbestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance, Wear, 263: 7-12 (2007) 1243-1248. [43] M. H. Cho, J. Ju, S. J. Kim, H. Jang, Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials, Wear, 260:7-8 (2006) 855-860.
  • [44] M. Eriksson, S. Jacobson, Tribological surfaces of organic brake pads, Tribology International, 33:12 (2000) 817-827.
There are 42 citations in total.

Details

Primary Language English
Subjects Powder Metallurgy
Journal Section Tasarım ve Teknoloji
Authors

Hüsamettin Kuş 0000-0002-9194-6816

İlker Sugözü 0000-0001-8340-8121

Adem Avcu 0000-0001-9981-5311

Project Number 122C219
Early Pub Date July 1, 2025
Publication Date
Submission Date February 19, 2025
Acceptance Date May 12, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Kuş, H., Sugözü, İ., & Avcu, A. (2025). Investigation of Physical, Mechanical and Tribological Properties of Blast Furnace Dust Reinforced Bronze Matrix Composite Brake Pads. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3). https://doi.org/10.29109/gujsc.1643160

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526