Research Article
BibTex RIS Cite

Comparison of Transfer Functions Calculated from 1D Ground Response Analyses Based on Shear Wave Velocities Obtained by Surface Wave Methods with HVSR Curves

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1696906

Abstract

In this study, the transfer functions derived from one-dimensional (1D) linear ground response analyses based on shear wave velocity (Vs) profiles obtained through surface wave analysis methods (MASW and ReMi) are compared in the frequency domain with horizontal-to-vertical spectral ratio (HVSR) curves computed from acceleration and ambient noise recordings acquired at the same locations. Within the scope of the study, synthetic earthquake records with characteristics similar to regional acceleration records were used as input motion in the ground response analyses to determine the frequency response of the soil and to identify resonance properties. The resulting transfer functions were compared with HVSR curves calculated from both seismic event and ambient noise recordings. The comparison focused primarily on dominant frequency and the agreement of spectral responses. The findings indicate that evaluating Vs profiles derived from combined surface wave methods using the transfer function approach offers a reliable method for identifying site-specific frequency characteristics, especially in locations where 1D soil behavior is dominant.

Supporting Institution

Scientific Research Coordination Unit of Çanakkale Onsekiz Mart University

Project Number

3833

Thanks

This study was supported by the Scientific Research Coordination Unit of Çanakkale Onsekiz Mart University under project number 3833

References

  • [1] C. B. Park, R. D. Miller, and J. Xia, "Multichannel analysis of surface waves (MASW)," Geophysics, vol. 64, no. 3, pp. 800–808, 1999. doi:10.1190/1.1444590.
  • [2] J. Xia, R. D. Miller, C. B. Park, and G. Tian, "Inversion of high frequency surface waves with fundamental and higher modes," Journal of Applied Geophysics, vol. 52, no. 1, pp. 45–57, 2003. doi:10.1016/S0926-9851(02)00239-2
  • [3] J. Garcia-Suarez, J. González-Carbajal, and D. Asimaki, "Analytical 1D transfer functions for layered soils," Soil Dynamics and Earthquake Engineering, vol. 163, p. 107532, 2022. doi: 10.1016/j.soildyn.2022.107532.
  • [4] S. L. Kramer, Geotechnical Earthquake Engineering, Prentice Hall, 1996.
  • [5] Y. Nakamura, "A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface," Quarterly Report of the Railway Technical Research Institute, vol. 30, no. 1, pp. 25–33, 1989.
  • [6] J. Lermo, F. J. Chávez-García, "Site effect evaluation using spectral ratios with only one station," Bulletin of the Seismological Society of America, vol. 83, no. 5, pp. 1574–1594, 1993.
  • [7] R. D. Borcherdt, "Effects of local geology on ground motion near San Francisco Bay," Bulletin of the Seismological Society of America, vol. 60, no. 1, pp. 29–61, 1970.
  • [8] M. B. S. Yust, B. R. Cox, and T. Cheng, "Epistemic Uncertainty in Vs Profiles and Vs30 Values Derived from Joint Consideration of Surface Wave and H/V Data at the FW07 TexNet Station," in Geotechnical Earthquake Engineering and Soil Dynamics V, GSP 291, pp. 387–396, 2018. doi:10.1061/9780784481462.038.
  • [9] M. Siyako, "Geology of the Çanakkale Region, NW Turkey," Journal of Asian Earth Sciences, vol. 27, no. 1, pp. 45–59, 2006. doi:10.1016/j.jseaes.2005.03.004.
  • [10] E. Atabey, K. Şentürk, Z. Karaköse, "Çanakkale-Altınkum Arasının Jeolojisi," Maden Tetkik ve Arama Dergisi, no. 129, pp. 47–65, 2004.
  • [11] K. Şentürk, Z. Karaköse, "Biga Yarımadası'nın jeolojisi ve tektonik evrimi," Maden Tetkik ve Arama Dergisi, no. 107, pp. 1–22, 1987.
  • [12] A. Ilgar, E. S. Demirci, M. Duru, Ş. Pehlivan, M. Dönmez, A. E. Akçay, H15-H16 Paftası Jeoloji Haritası. Ankara, Türkiye: Maden Tetkik ve Arama Genel Müdürlüğü, 2008.
  • [13] J. N. Louie, "Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays," Bulletin of the Seismological Society of America, vol. 91, no. 2, pp. 347–364, 2001. doi:10.1785/0120000098.
  • [14] Foti, C. G. Lai, G. J. Rix, C. Strobbia, Surface Wave Methods for Near-Surface Site Characterization, CRC Press, 2017.
  • [15] L. V. Socco and C. Strobbia, "Surface-wave method for near-surface characterization: A tutorial," Near Surface Geophysics, vol. 2, no. 4, pp. 165–185, 2004. doi:10.3997/1873-0604.2004015.
  • [16] M. Wathelet, J.-L. Chatelain, C. Cornou, G. Di Giulio, B. Guillier, M. Ohrnberger, and A. Savvaidis, "Geopsy: A user-friendly open-source tool set for ambient vibration processing," Seismological Research Letters, vol. 91, no. 3, pp. 1878–1889, 2020. doi:10.1785/0220190313.
  • [17] A. Büyüksaraç, T. Bekler, A. Demirci, and O. Eyisüren, "New insights into the dynamic characteristics of alluvial media under the earthquake prone area: a case study for the Çanakkale city settlement (NW of Turkey)," Arabian Journal of Geosciences, vol. 14, no. 6, p. 562, 2021. doi:10.1007/s12517-021-06665-w.
  • [18] Y. M. A. Hashash, M. I. Musgrove, J. A. Harmon, D. R. Groholski, C. A. Phillips, and D. Park, DEEPSOIL 2016, User Manual and Tutorial. Urbana, IL: University of Illinois at Urbana-Champaign, 2016.
  • [19] H. B. Seed and I. M. Idriss, Soil Moduli and Damping Factors for Dynamic Response Analyses, Report No. EERC 70-10, University of California, Berkeley, 1970.
  • [20] Z. Huang, S. Cai, R. Hu, J. Wang, M. Jiang, and J. Gong, "Investigation of the effect of relative density on the dynamic modulus and damping ratio for coarse grained soil," Applied Sciences, vol. 14, no. 15, pp. 6847, 2024. doi:10.3390/app14156847
  • [21] A. Gosar, "Microtremor HVSR method – a passive geophysical tool to study site effects: Examples from Slovenia," Natural Hazards and Earth System Sciences, vol. 17, no. 6, pp. 925–937, 2017. doi:10.5194/nhess-17-925-2017.
  • [22] V. D’Amico, M. Picozzi, F. Baliva, and D. Albarello, "Ambient noise measurements for preliminary site-effects characterization in the urban area of Florence, Italy," Bulletin of the Seismological Society of America, vol. 98, no. 3, pp. 1373–1388, 2008. doi:10.1785/0120070231.
  • [23] SESAME Project, Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing and Interpretation, European Commission – Research General Directorate, Project No. EVG1-CT-2000-00026, December 2004.

Yüzey Dalgası Analizi ile Elde Edilen Kayma Dalgası Hızlarına Dayalı Zemin Tepki Analizleri ile Hesaplanan Transfer Fonksiyonlarının HVSR Eğrileri ile Karşılaştırılması

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1696906

Abstract

Bu çalışmada, yüzey dalgası analizi yöntemleri (MASW ve Remi) ile elde edilen kayma dalgası hızı (Vs) profillerine dayanılarak gerçekleştirilen bir boyutlu (1B) lineer zemin tepki analizlerinden elde edilen transfer fonksiyonlarının, aynı lokasyonda kaydedilmiş ivme ve gürültü kayıtlarından hesaplanan yatay/düşey spektral oran (HVSR) eğrileri ile frekans düzleminde karşılaştırılması amaçlanmıştır. Çalışma kapsamında, zemin tepki analizinde girdi hareketi olarak bölgesel deprem kayıtlarının ivme değerlerine benzer özellikte yapay deprem kaydı kullanılarak zeminin frekans tepkisi belirlenmiş ve bu yolla rezonans özelliklerinin tanımlanması amaçlanmıştır. Elde edilen transfer fonksiyonları, sahada kaydedilen deprem kayıtları ve gürültü kayıtlarından hesaplanan HVSR eğrileri ile karşılaştırılmış; hakim frekans başta olmak üzere, spektral tepkilerin uyumu değerlendirilmiştir. Bulgular, yüzey dalgası yöntemlerinin birlikte kullanımı ile Vs profillerinin transfer fonksiyonu yaklaşımı ile değerlendirilmesinin, deprem kayıtları ve gürültü kayıtlarından elde edilen saha koşullarına özgü frekans karakteristiklerinin belirlenmesinde 1B zemin davranışının etkin olduğu sahalarda güvenilir bir yöntem sunduğunu ortaya koymaktadır.

Supporting Institution

Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

3833

Thanks

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Biriminin 3833 nolu projesi tarafından desteklenmiştir.

References

  • [1] C. B. Park, R. D. Miller, and J. Xia, "Multichannel analysis of surface waves (MASW)," Geophysics, vol. 64, no. 3, pp. 800–808, 1999. doi:10.1190/1.1444590.
  • [2] J. Xia, R. D. Miller, C. B. Park, and G. Tian, "Inversion of high frequency surface waves with fundamental and higher modes," Journal of Applied Geophysics, vol. 52, no. 1, pp. 45–57, 2003. doi:10.1016/S0926-9851(02)00239-2
  • [3] J. Garcia-Suarez, J. González-Carbajal, and D. Asimaki, "Analytical 1D transfer functions for layered soils," Soil Dynamics and Earthquake Engineering, vol. 163, p. 107532, 2022. doi: 10.1016/j.soildyn.2022.107532.
  • [4] S. L. Kramer, Geotechnical Earthquake Engineering, Prentice Hall, 1996.
  • [5] Y. Nakamura, "A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface," Quarterly Report of the Railway Technical Research Institute, vol. 30, no. 1, pp. 25–33, 1989.
  • [6] J. Lermo, F. J. Chávez-García, "Site effect evaluation using spectral ratios with only one station," Bulletin of the Seismological Society of America, vol. 83, no. 5, pp. 1574–1594, 1993.
  • [7] R. D. Borcherdt, "Effects of local geology on ground motion near San Francisco Bay," Bulletin of the Seismological Society of America, vol. 60, no. 1, pp. 29–61, 1970.
  • [8] M. B. S. Yust, B. R. Cox, and T. Cheng, "Epistemic Uncertainty in Vs Profiles and Vs30 Values Derived from Joint Consideration of Surface Wave and H/V Data at the FW07 TexNet Station," in Geotechnical Earthquake Engineering and Soil Dynamics V, GSP 291, pp. 387–396, 2018. doi:10.1061/9780784481462.038.
  • [9] M. Siyako, "Geology of the Çanakkale Region, NW Turkey," Journal of Asian Earth Sciences, vol. 27, no. 1, pp. 45–59, 2006. doi:10.1016/j.jseaes.2005.03.004.
  • [10] E. Atabey, K. Şentürk, Z. Karaköse, "Çanakkale-Altınkum Arasının Jeolojisi," Maden Tetkik ve Arama Dergisi, no. 129, pp. 47–65, 2004.
  • [11] K. Şentürk, Z. Karaköse, "Biga Yarımadası'nın jeolojisi ve tektonik evrimi," Maden Tetkik ve Arama Dergisi, no. 107, pp. 1–22, 1987.
  • [12] A. Ilgar, E. S. Demirci, M. Duru, Ş. Pehlivan, M. Dönmez, A. E. Akçay, H15-H16 Paftası Jeoloji Haritası. Ankara, Türkiye: Maden Tetkik ve Arama Genel Müdürlüğü, 2008.
  • [13] J. N. Louie, "Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays," Bulletin of the Seismological Society of America, vol. 91, no. 2, pp. 347–364, 2001. doi:10.1785/0120000098.
  • [14] Foti, C. G. Lai, G. J. Rix, C. Strobbia, Surface Wave Methods for Near-Surface Site Characterization, CRC Press, 2017.
  • [15] L. V. Socco and C. Strobbia, "Surface-wave method for near-surface characterization: A tutorial," Near Surface Geophysics, vol. 2, no. 4, pp. 165–185, 2004. doi:10.3997/1873-0604.2004015.
  • [16] M. Wathelet, J.-L. Chatelain, C. Cornou, G. Di Giulio, B. Guillier, M. Ohrnberger, and A. Savvaidis, "Geopsy: A user-friendly open-source tool set for ambient vibration processing," Seismological Research Letters, vol. 91, no. 3, pp. 1878–1889, 2020. doi:10.1785/0220190313.
  • [17] A. Büyüksaraç, T. Bekler, A. Demirci, and O. Eyisüren, "New insights into the dynamic characteristics of alluvial media under the earthquake prone area: a case study for the Çanakkale city settlement (NW of Turkey)," Arabian Journal of Geosciences, vol. 14, no. 6, p. 562, 2021. doi:10.1007/s12517-021-06665-w.
  • [18] Y. M. A. Hashash, M. I. Musgrove, J. A. Harmon, D. R. Groholski, C. A. Phillips, and D. Park, DEEPSOIL 2016, User Manual and Tutorial. Urbana, IL: University of Illinois at Urbana-Champaign, 2016.
  • [19] H. B. Seed and I. M. Idriss, Soil Moduli and Damping Factors for Dynamic Response Analyses, Report No. EERC 70-10, University of California, Berkeley, 1970.
  • [20] Z. Huang, S. Cai, R. Hu, J. Wang, M. Jiang, and J. Gong, "Investigation of the effect of relative density on the dynamic modulus and damping ratio for coarse grained soil," Applied Sciences, vol. 14, no. 15, pp. 6847, 2024. doi:10.3390/app14156847
  • [21] A. Gosar, "Microtremor HVSR method – a passive geophysical tool to study site effects: Examples from Slovenia," Natural Hazards and Earth System Sciences, vol. 17, no. 6, pp. 925–937, 2017. doi:10.5194/nhess-17-925-2017.
  • [22] V. D’Amico, M. Picozzi, F. Baliva, and D. Albarello, "Ambient noise measurements for preliminary site-effects characterization in the urban area of Florence, Italy," Bulletin of the Seismological Society of America, vol. 98, no. 3, pp. 1373–1388, 2008. doi:10.1785/0120070231.
  • [23] SESAME Project, Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing and Interpretation, European Commission – Research General Directorate, Project No. EVG1-CT-2000-00026, December 2004.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering, Geology of Engineering
Journal Section Tasarım ve Teknoloji
Authors

Onur Eyisüren 0000-0002-7214-4316

Öznur Karaca 0000-0002-8191-1599

Sadık Öztoprak 0000-0001-5679-8048

Project Number 3833
Early Pub Date August 15, 2025
Publication Date
Submission Date May 10, 2025
Acceptance Date June 13, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Eyisüren, O., Karaca, Ö., & Öztoprak, S. (2025). Yüzey Dalgası Analizi ile Elde Edilen Kayma Dalgası Hızlarına Dayalı Zemin Tepki Analizleri ile Hesaplanan Transfer Fonksiyonlarının HVSR Eğrileri ile Karşılaştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3). https://doi.org/10.29109/gujsc.1696906

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526