Research Article
BibTex RIS Cite

Performance Enhancement Of A Salient-Pole Synchronous Generator Through Multi-Objective Geometric Optimization

Year 2025, Volume: 13 Issue: 3, 906 - 918, 30.09.2025
https://doi.org/10.29109/gujsc.1702303

Abstract

This study presents a design methodology aimed at enhancing the electromagnetic performance of salient-pole synchronous generators through the optimization of key geometric parameters. An equivalent circuit and an electromagnetic model of the generator were developed, and the initial design was analytically formulated and subsequently modeled using ANSYS Maxwell software. Critical rotor and stator geometric variables were defined as optimization parameters and refined through a multi-objective genetic algorithm. The optimization process simultaneously targeted multiple performance indicators, including efficiency, total harmonic distortion (THD), stator and rotor flux densities, and slot fill factor. The results reveal substantial performance improvements, with the THD of the full-load output voltage reduced by up to 64%, the efficiency increased by approximately 0.8%, and the total losses reduced by nearly 16%. The final optimized design was validated through 2D finite element analysis (FEA), confirming its compliance with flux density, current density, and thermal limit criteria.

References

  • [1] Çıtak, E., & Kılınç Pala, P. B. “Yenilenebilir Enerjinin Enerji Güvenliğine Etkisi.” Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (25), 79-102., 2016. [2] T. d. P. M. Bazzo, V. d. O. Moura, and R. Carlson, "A step-by-step procedure to perform preliminary designs of salient-pole synchronous generators," Energies, vol. 14, no. 16, p. 4989, 2021.
  • [3] O. G. Usta ve S. Akkaya Oy, “Rüzgâr Temelli Piezoelektrik Jeneratör Tasarımı”, DÜBİTED, c. 12, sy. 2, ss. 1166–1177, 2024.
  • [4] Paish O., “Small HydroPower: TechnologyandCurrentStatus”, Renewable and Sustainable Energy Reviews, Elsevier Science Ltd., 6: 537-556, 2002.
  • [5] Lugaresi, A.,Mass, A., “Designing Francis Turbines, Trends in theLastDecade”, Water Power and Dam Cont., 23-28, 1987.
  • [6] A. Ruprecht, "Unsteady flow simulation in hydraulic machinery," Task Quarterly Scientific Bulletin Academic Computer Centre, vol. 61, pp. 187-208, 2002, Gdansk, Poland.
  • [7] H. -J. Kim, J. -S. Jeong, M. -H. Yoon, J. -W. Moon and J. -P. Hong, "Simple Size Determination of Permanent-Magnet Synchronous Machines," in IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 7972-7983, Oct. 2017.
  • [8] K. Weeber and S. R. H. Hoole, "Geometric parametrization and constrained optimization techniques in the design of salient pole synchronous machines," in IEEE Transactions on Magnetics, vol. 28, no. 4, pp. 1948-1960, July 1992.
  • [9] Y. Duan and D. M. Ionel, "A Review of Recent Developments in Electrical Machine Design Optimization Methods With a Permanent-Magnet Synchronous Motor Benchmark Study," in IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1268-1275, May-June 2013.
  • [10] S. Pal and S. Haldar, "Optimization of drilling parameters for composite laminate using genetic algorithm," Data-Driven Optimization of Manufacturing Processes, pp. 194-216, 2020.
  • [11] “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” in IEEE Std 519-2014 (Revision of IEEE Std 519-1992) , vol., no., pp.1-29, 11 June 2014.
  • [12] İ. Topaloğlu ve O. Gürdal, “Çıkık Kutuplu Senkron Hidrogeneratörlerin Dinamik ve Geçici Zaman Analiz Koşullarında Ardışık Karma Değişken Nonlineer Programlama Metodu Kullanılarak Optimizasyonu”, Gazi Üniv. Müh. Mim. Fak. DerCilt, c. 25, No 2, 355-361, 2013.
  • [13] A. Spargo, S. Ilie and J. Chan, “Salient-pole rotor optimisations for synchronous generators using FEA software,” in 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), pp. 158-162, 2017.
  • [14] N. Pamuk, “Genetik Algoritma Optimizasyonu Kullanılarak Senkron Makine Tasarımı ve Uygunluk Parametrelerinin Belirlenmesi”, J. InnovativeEng. Nat. Sci., c. 4, s. 2, ss. 276-288, 2024.
  • [15] Y.-m. You, “Multi-objective optimal design of permanent magnet synchronous motor for electric vehicle based on deep learning,” Applied Sciences, vol. 10, no. 2, p. 482, 2020, doi: 10.3390/app10020482.
  • [16] A. Shoaei, F. Farshbaf-Roomi, and Q. Wang, “Enhanced multi-objective design optimisation of salient pole reluctance magnetic gear using Bayesian-optimised artificial neural networks,” IET Electric Power Applications, vol. 19, no. 3, p. e70017, 2025, doi: 10.1049/elp2.70017.
  • [17] A. D. Karaoglan, D. Perin, and K. Yilmaz, “Multiobjective design optimization of stator for synchronous generator using bat algorithm and analysis of magnetic flux density distribution,” Electric Power Components and Systems, vol. 49, no. 9–10, pp. 919–929, 2021, doi: 10.1080/15325008.2022.2049651.
  • [18] T. Sun et al., “Multi-objective optimization of a hybrid excitation generator with a parallel magnetic circuit based on the coupling of dual optimization algorithms,” Archives of Electrical Engineering, vol. 74, no. 1, pp. 127–149, 2025, doi:10.24425/aee.2025.153016
  • [19] K. Chen, S. Ma, C. Li, Y. Wu, and J. Ma, “Optimization and design of built-in U-shaped permanent magnet and salient-pole electromagnetic hybrid excitation generator for vehicles,” Symmetry, vol. 17, no. 6, p. 897, 2025, doi: 10.3390/sym17060897.
  • [20] Hendershot, JR; Miller, TJE Fırçasız Kalıcı Mıknatıslı Makinelerin Tasarımı, 1. baskı; Motor Tasarım Kitapları: Venice, CA, ABD, 2010
  • [21] Jones, CV Elektrik Makinelerinin Birleşik Teorisi, 1. basım; Butterworths: Londra, İngiltere, 1967.
  • [22] Boldea, I. “Synchronousgenerators” Taylor & Francis Group LLC, New York, A.B.D., ISBN 0- 8493-5725-X, 1.1-8.23, 2006.
  • [23] T. Murata and H. Ishibuchi, "MOGA: multi-objective genetic algorithms," Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Perth, WA, Australia, pp. 289-294, 1995.

Çıkık Kutuplu Senkron Generatörün Çok Amaçlı Geometrik Optimizasyona Dayalı Performans İyileştirmesi

Year 2025, Volume: 13 Issue: 3, 906 - 918, 30.09.2025
https://doi.org/10.29109/gujsc.1702303

Abstract

Bu çalışmada, çıkık kutuplu senkron generatörlerin elektromanyetik performanslarının artırılmasına yönelik olarak geometrik parametrelerin optimizasyonuna dayalı bir tasarım yaklaşımı sunulmuştur. Generatörün eşdeğer devresi ve elektromanyetik modeli geliştirilmiş, başlangıç tasarımı analitik olarak oluşturulmuş ve ANSYS Maxwell yazılımı kullanılarak modellenmiştir. Kritik öneme sahip rotor ve stator geometrisine ait parametreler optimizasyon değişkeni olarak tanımlanmış ve çok amaçlı genetik algoritma yöntemiyle optimize edilmiştir. Optimizasyon sürecinde verimlilik, toplam harmonik bozulma (THB), stator ve rotor akı yoğunlukları ile oluk doluluk oranı gibi çok sayıda performans kriteri dikkate alınmıştır. Elde edilen sonuçlar, optimizasyonun generatör performansında anlamlı iyileşmelere yol açtığını göstermektedir. Tam yük çıkış gerilimi THB oranında %64’e varan azalma sağlanırken, verimlilik yaklaşık %0.8 oranında artırılmış ve toplam kayıplarda %16’ya yakın düşüş elde edilmiştir. Nihai tasarım, 2B sonlu elemanlar analizi (SEA) ile doğrulanarak akı yoğunluğu, akım yoğunluğu ve termal limitler açısından uygunluğu ortaya konmuştur.

References

  • [1] Çıtak, E., & Kılınç Pala, P. B. “Yenilenebilir Enerjinin Enerji Güvenliğine Etkisi.” Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (25), 79-102., 2016. [2] T. d. P. M. Bazzo, V. d. O. Moura, and R. Carlson, "A step-by-step procedure to perform preliminary designs of salient-pole synchronous generators," Energies, vol. 14, no. 16, p. 4989, 2021.
  • [3] O. G. Usta ve S. Akkaya Oy, “Rüzgâr Temelli Piezoelektrik Jeneratör Tasarımı”, DÜBİTED, c. 12, sy. 2, ss. 1166–1177, 2024.
  • [4] Paish O., “Small HydroPower: TechnologyandCurrentStatus”, Renewable and Sustainable Energy Reviews, Elsevier Science Ltd., 6: 537-556, 2002.
  • [5] Lugaresi, A.,Mass, A., “Designing Francis Turbines, Trends in theLastDecade”, Water Power and Dam Cont., 23-28, 1987.
  • [6] A. Ruprecht, "Unsteady flow simulation in hydraulic machinery," Task Quarterly Scientific Bulletin Academic Computer Centre, vol. 61, pp. 187-208, 2002, Gdansk, Poland.
  • [7] H. -J. Kim, J. -S. Jeong, M. -H. Yoon, J. -W. Moon and J. -P. Hong, "Simple Size Determination of Permanent-Magnet Synchronous Machines," in IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 7972-7983, Oct. 2017.
  • [8] K. Weeber and S. R. H. Hoole, "Geometric parametrization and constrained optimization techniques in the design of salient pole synchronous machines," in IEEE Transactions on Magnetics, vol. 28, no. 4, pp. 1948-1960, July 1992.
  • [9] Y. Duan and D. M. Ionel, "A Review of Recent Developments in Electrical Machine Design Optimization Methods With a Permanent-Magnet Synchronous Motor Benchmark Study," in IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1268-1275, May-June 2013.
  • [10] S. Pal and S. Haldar, "Optimization of drilling parameters for composite laminate using genetic algorithm," Data-Driven Optimization of Manufacturing Processes, pp. 194-216, 2020.
  • [11] “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” in IEEE Std 519-2014 (Revision of IEEE Std 519-1992) , vol., no., pp.1-29, 11 June 2014.
  • [12] İ. Topaloğlu ve O. Gürdal, “Çıkık Kutuplu Senkron Hidrogeneratörlerin Dinamik ve Geçici Zaman Analiz Koşullarında Ardışık Karma Değişken Nonlineer Programlama Metodu Kullanılarak Optimizasyonu”, Gazi Üniv. Müh. Mim. Fak. DerCilt, c. 25, No 2, 355-361, 2013.
  • [13] A. Spargo, S. Ilie and J. Chan, “Salient-pole rotor optimisations for synchronous generators using FEA software,” in 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), pp. 158-162, 2017.
  • [14] N. Pamuk, “Genetik Algoritma Optimizasyonu Kullanılarak Senkron Makine Tasarımı ve Uygunluk Parametrelerinin Belirlenmesi”, J. InnovativeEng. Nat. Sci., c. 4, s. 2, ss. 276-288, 2024.
  • [15] Y.-m. You, “Multi-objective optimal design of permanent magnet synchronous motor for electric vehicle based on deep learning,” Applied Sciences, vol. 10, no. 2, p. 482, 2020, doi: 10.3390/app10020482.
  • [16] A. Shoaei, F. Farshbaf-Roomi, and Q. Wang, “Enhanced multi-objective design optimisation of salient pole reluctance magnetic gear using Bayesian-optimised artificial neural networks,” IET Electric Power Applications, vol. 19, no. 3, p. e70017, 2025, doi: 10.1049/elp2.70017.
  • [17] A. D. Karaoglan, D. Perin, and K. Yilmaz, “Multiobjective design optimization of stator for synchronous generator using bat algorithm and analysis of magnetic flux density distribution,” Electric Power Components and Systems, vol. 49, no. 9–10, pp. 919–929, 2021, doi: 10.1080/15325008.2022.2049651.
  • [18] T. Sun et al., “Multi-objective optimization of a hybrid excitation generator with a parallel magnetic circuit based on the coupling of dual optimization algorithms,” Archives of Electrical Engineering, vol. 74, no. 1, pp. 127–149, 2025, doi:10.24425/aee.2025.153016
  • [19] K. Chen, S. Ma, C. Li, Y. Wu, and J. Ma, “Optimization and design of built-in U-shaped permanent magnet and salient-pole electromagnetic hybrid excitation generator for vehicles,” Symmetry, vol. 17, no. 6, p. 897, 2025, doi: 10.3390/sym17060897.
  • [20] Hendershot, JR; Miller, TJE Fırçasız Kalıcı Mıknatıslı Makinelerin Tasarımı, 1. baskı; Motor Tasarım Kitapları: Venice, CA, ABD, 2010
  • [21] Jones, CV Elektrik Makinelerinin Birleşik Teorisi, 1. basım; Butterworths: Londra, İngiltere, 1967.
  • [22] Boldea, I. “Synchronousgenerators” Taylor & Francis Group LLC, New York, A.B.D., ISBN 0- 8493-5725-X, 1.1-8.23, 2006.
  • [23] T. Murata and H. Ishibuchi, "MOGA: multi-objective genetic algorithms," Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Perth, WA, Australia, pp. 289-294, 1995.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Electrical Machines and Drives
Journal Section Research Article
Authors

Melda Eyüboğlu 0000-0001-5349-2190

Burak Yenipınar 0000-0002-5997-944X

Cemil Ocak 0000-0001-6542-6350

Early Pub Date July 28, 2025
Publication Date September 30, 2025
Submission Date May 19, 2025
Acceptance Date July 3, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Eyüboğlu, M., Yenipınar, B., & Ocak, C. (2025). Çıkık Kutuplu Senkron Generatörün Çok Amaçlı Geometrik Optimizasyona Dayalı Performans İyileştirmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3), 906-918. https://doi.org/10.29109/gujsc.1702303

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526