Research Article
BibTex RIS Cite

Comparison of Battery Electric Vehicles and Internal Combustion Engine Vehicles in terms of Rollover Stability

Year 2025, Volume: 13 Issue: 3, 1173 - 1183, 30.09.2025
https://doi.org/10.29109/gujsc.1750103

Abstract

Vehicle rollover stability is crucial, because rollover accidents have high fatality rates. In this study, battery-electric and internal combustion engine vehicles, using the same C-SUV chassis, were compared in terms of rollover stability. The vehicles were first evaluated using the static stability factor (SSF) and load transfer ratio (LTR), which are influenced by geometric characteristics and vehicle dimensions. The rollover probability of a battery-electric vehicle (BEV) was 8.4%, while the rollover probability of an internal combustion engine vehicle (CEV) was 16.6%. The rollover occurred at 15% higher lateral acceleration value for the BEV compared to the CEV, considering the LTR. The vehicles were subjected to moose tests at 50 km/h in a simulated environment to evaluate their dynamic behavior. Vehicle body roll angles revealed that the CEV had 50% greater body roll than the BEV. It was concluded that the BEV was significantly superior to the CEV in terms of rollover stability. This study is expected to form the basis for studies on converting internal combustion vehicles to battery-electric vehicles.

References

  • [1] Fuerbeth, U., “Centre of gravity of motor vehicles”, Forensic Science International, 2024; 361: 112073, https://doi.org/10.1016/j.forsciint.2024.112073
  • [2] Allen, R., Rosenthal, T., Szostak, H., “Steady State and Transient Analysis of Ground Vehicle Handling” SAE Technical Paper, 1987; 870495, https://doi.org/10.4271/ 870495.
  • [3] Burckhardt, M., Burg, H., “Berechnung und Rekonstruktion des Bremsverhaltens von Pkw” Verlag Information Ambs GmbH, Kippenheim, 1988; ISBN 3885500256.
  • [4] Nguyen, T. A., “Establishing a novel adaptive fuzzy control algorithm for an active stabilizer bar with complex automotive dynamics model”, Ain Shams Engineering Journal, 2024; 15: 102334, https://doi.org/10.1016/j.asej.2023.102334.
  • [5] Nguyen, D. N., Nguyen, T. A., Dang, N. D., “A complex rollover dynamics model with active stabilizer bar controlled by the fuzzy algorithm”, Heliyon, 2022; 8: e11715, https://doi.org/10.1016/j.heliyon.2022.e11715.
  • [6] Vu, V. T., Sename, O., Dugard, L., Gaspar, P., “Active anti-roll bar control using electronic servo valve hydraulic damper on single unit heavy vehicle”, IFAC-PapersOnLine, 2016; 49-11: 418-425, https://doi.org/10.1016/j.ifacol.2016.08.062.
  • [7] Lee, S., Kasahara, M., Mori, Y., “Roll Damping Control of a Heavy Vehicle under the Strong Crosswind”, 7th IFAC Symposium on Advances in Automotive Control, IFAC Proceedings Volumes, 2013; 46: (21) 219-224, https://doi.org/10.3182/20130904-4-JP-2042.00053.
  • [8] Chen, B. C., Yu, C. C., Hsu, W. F., Lo, M. F., “Design of electronic stability control for rollover prevention using sliding mode control”, International Journal of Vehicle Design, 2011; 56: (1-4) 224-245.
  • [9] Shin, D., Woo, S., Park, M., “Rollover Index for Rollover Mitigation Function of Intelligent Commercial Vehicle’s Electronic Stability Control”, Electronics, 2021; 10: 2605, https://doi.org/10.3390/electronics10212605.
  • [10] Gaspar, P., Szaszi, I., Bokor, J., “Improving Rollover Stability With Active Suspensions By Using An Lpv Method”, 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004; Instituto Superior Técnico, Lisboa, Portugal.
  • [11] Yoon, J., Cho, W., Yi, K., Koo, B., “Unified Chassis Control for Vehicle Rollover Prevention”, IFAC Proceedings Volumes, 2008; 41: (2) 5682-5687, https://doi.org/10.3182/20080706-5-KR-1001.00958.
  • [12] Zhang, B., Huang, J., Wang, J., Su, Y., Li, J., Wang, X., Chen, Y., Wang, Y., Zhong, Z., “Can software-defined vehicles never roll over: A perspective of active structural transformation”, Fundamental Research, 2024; 4: 1063-1071, https://doi.org/10.1016/j.fmre.2023.12.024.
  • [13] Wang, J., Zhang, X., Dong, Y., Liu, S., Zhang, L., “Roll stability control of in-wheel motors drive electric vehicle on potholed roads”, Control Engineering Practice, 2025; 157: 106247, https://doi.org/10.1016/j.conengprac.2025.106247.
  • [14] Gillespie, T. D., “Fundamentals of Vehicle Dynamics” SAE International, 1992; ISBN 1560911999.
  • [15] Rajamani, R., “Vehicle Dynamics and Control” Second Edition, Springer, 2012; ISBN 978-1-4614-1432-2.
  • [16] NHTSA, “Rating system for rollover resistance, Special Report 265”, National Highway Traffic Safety Administration (NHTSA), 2002; U.S. Department of Transportation.
  • [17] Sentosa, S. P., Jusuf, A., Gunawan, L., Abu Kassim, K. A., Hakim, M.L., Wiranto, B. P. E., “Rollover Risk Probability Analysis for SUVs and MPVs in the ASEAN Market” Journal of the Society of Automotive Engineers Malaysia, 2018; 2: (3) 275-288, https://doi.org/10.56381/jsaem.v2i3.99.
  • [18] ISO 3888-1:2018(E), “Passenger cars — Test track for a severe lane-change manoeuvre —Part 1: Double lane-change”, Internation Standard, 2018.
  • [19] Jalali, K., Uchida, T., McPhee, J., Lambert, S., “Development of an Advanced Fuzzy Active Steering Controller and a Novel Method to Tune the Fuzzy Controller”, SAE International, 2013; 2013-01-0688.

Bataryalı Elektrikli Araçlar ile İçten Yanmalı Motorlu Araçların Devrilme Kararlılığı Yönünden Karşılaştırılması

Year 2025, Volume: 13 Issue: 3, 1173 - 1183, 30.09.2025
https://doi.org/10.29109/gujsc.1750103

Abstract

Devrilmeyle sonuçlanan kazalarda ölüm oranları yüksek olduğundan araçların devrilme kararlılığı önem arz etmektedir. Bu çalışmada; aynı C-SUV şasiyi kullanan bataryalı elektrikli ve içten yanmalı motora sahip iki araç devrilme kararlılığı açısından karşılaştırılmıştır. Araçlar öncelikle geometric özelliklerin ve araç boyutlarının etkili olduğu static stabilite faktörü (SSF) ve yük transfer oranı (YTO) vasıtasıyla değerlendirilmiştir. Bataryalı elektrikli aracın (BEA) devrilme olasılığı %8,4 iken içten yanmalı motorlu aracın (İMA) devrilme olasılığı %16,6 olmuştur. BEA’da devrilme İMA’ya göre YTO dikkate alındığında %15 daha yüksek bir yanal ivme değerinde gerçekleşmiştir. Araçlar dinamik davranışlar açısından değerlendirilmek üzere simülasyon ortamında 50 km/h hızda geyik testlerine tabi tutulmuştur. Araç gövdesi yuvarlanma açılarına bakıldığında İMA’nın gövde yuvarlanmasının BEA’ya göre %50 daha fazla olduğu görülmüştür. Devrilme kararlılığı yönünden BEA’nın İMA’ya göre üstün olduğu sonucuna varılmıştır. Bu çalışmanın, içten yanmalı araçların bataryalı elektrikli araçlara dönüştürülmesi çalışmalarına temel oluşturması öngörülmektedir.

References

  • [1] Fuerbeth, U., “Centre of gravity of motor vehicles”, Forensic Science International, 2024; 361: 112073, https://doi.org/10.1016/j.forsciint.2024.112073
  • [2] Allen, R., Rosenthal, T., Szostak, H., “Steady State and Transient Analysis of Ground Vehicle Handling” SAE Technical Paper, 1987; 870495, https://doi.org/10.4271/ 870495.
  • [3] Burckhardt, M., Burg, H., “Berechnung und Rekonstruktion des Bremsverhaltens von Pkw” Verlag Information Ambs GmbH, Kippenheim, 1988; ISBN 3885500256.
  • [4] Nguyen, T. A., “Establishing a novel adaptive fuzzy control algorithm for an active stabilizer bar with complex automotive dynamics model”, Ain Shams Engineering Journal, 2024; 15: 102334, https://doi.org/10.1016/j.asej.2023.102334.
  • [5] Nguyen, D. N., Nguyen, T. A., Dang, N. D., “A complex rollover dynamics model with active stabilizer bar controlled by the fuzzy algorithm”, Heliyon, 2022; 8: e11715, https://doi.org/10.1016/j.heliyon.2022.e11715.
  • [6] Vu, V. T., Sename, O., Dugard, L., Gaspar, P., “Active anti-roll bar control using electronic servo valve hydraulic damper on single unit heavy vehicle”, IFAC-PapersOnLine, 2016; 49-11: 418-425, https://doi.org/10.1016/j.ifacol.2016.08.062.
  • [7] Lee, S., Kasahara, M., Mori, Y., “Roll Damping Control of a Heavy Vehicle under the Strong Crosswind”, 7th IFAC Symposium on Advances in Automotive Control, IFAC Proceedings Volumes, 2013; 46: (21) 219-224, https://doi.org/10.3182/20130904-4-JP-2042.00053.
  • [8] Chen, B. C., Yu, C. C., Hsu, W. F., Lo, M. F., “Design of electronic stability control for rollover prevention using sliding mode control”, International Journal of Vehicle Design, 2011; 56: (1-4) 224-245.
  • [9] Shin, D., Woo, S., Park, M., “Rollover Index for Rollover Mitigation Function of Intelligent Commercial Vehicle’s Electronic Stability Control”, Electronics, 2021; 10: 2605, https://doi.org/10.3390/electronics10212605.
  • [10] Gaspar, P., Szaszi, I., Bokor, J., “Improving Rollover Stability With Active Suspensions By Using An Lpv Method”, 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004; Instituto Superior Técnico, Lisboa, Portugal.
  • [11] Yoon, J., Cho, W., Yi, K., Koo, B., “Unified Chassis Control for Vehicle Rollover Prevention”, IFAC Proceedings Volumes, 2008; 41: (2) 5682-5687, https://doi.org/10.3182/20080706-5-KR-1001.00958.
  • [12] Zhang, B., Huang, J., Wang, J., Su, Y., Li, J., Wang, X., Chen, Y., Wang, Y., Zhong, Z., “Can software-defined vehicles never roll over: A perspective of active structural transformation”, Fundamental Research, 2024; 4: 1063-1071, https://doi.org/10.1016/j.fmre.2023.12.024.
  • [13] Wang, J., Zhang, X., Dong, Y., Liu, S., Zhang, L., “Roll stability control of in-wheel motors drive electric vehicle on potholed roads”, Control Engineering Practice, 2025; 157: 106247, https://doi.org/10.1016/j.conengprac.2025.106247.
  • [14] Gillespie, T. D., “Fundamentals of Vehicle Dynamics” SAE International, 1992; ISBN 1560911999.
  • [15] Rajamani, R., “Vehicle Dynamics and Control” Second Edition, Springer, 2012; ISBN 978-1-4614-1432-2.
  • [16] NHTSA, “Rating system for rollover resistance, Special Report 265”, National Highway Traffic Safety Administration (NHTSA), 2002; U.S. Department of Transportation.
  • [17] Sentosa, S. P., Jusuf, A., Gunawan, L., Abu Kassim, K. A., Hakim, M.L., Wiranto, B. P. E., “Rollover Risk Probability Analysis for SUVs and MPVs in the ASEAN Market” Journal of the Society of Automotive Engineers Malaysia, 2018; 2: (3) 275-288, https://doi.org/10.56381/jsaem.v2i3.99.
  • [18] ISO 3888-1:2018(E), “Passenger cars — Test track for a severe lane-change manoeuvre —Part 1: Double lane-change”, Internation Standard, 2018.
  • [19] Jalali, K., Uchida, T., McPhee, J., Lambert, S., “Development of an Advanced Fuzzy Active Steering Controller and a Novel Method to Tune the Fuzzy Controller”, SAE International, 2013; 2013-01-0688.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Hybrid and Electric Vehicles and Powertrains, Vehicle Technique and Dynamics
Journal Section Tasarım ve Teknoloji
Authors

Turgay Ergin 0000-0002-6396-1277

Early Pub Date September 2, 2025
Publication Date September 30, 2025
Submission Date July 24, 2025
Acceptance Date August 25, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Ergin, T. (2025). Bataryalı Elektrikli Araçlar ile İçten Yanmalı Motorlu Araçların Devrilme Kararlılığı Yönünden Karşılaştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3), 1173-1183. https://doi.org/10.29109/gujsc.1750103

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526