Research Article
BibTex RIS Cite

Atık Malzeme Kullanılarak Çevre Dostu Köpük Beton Üretimi: Atık Beton Çamuru ve Lif Katkılarının Etkileri

Year 2025, Volume: 13 Issue: 4
https://doi.org/10.29109/gujsc.1612287

Abstract

Bu çalışma, atık beton çamuru (CS) ve polipropilen lifin (PF) köpük betonun fiziksel-mekanik ve termal özelliklerini iyileştirme potansiyelini araştırarak sürdürülebilirliği teşvik etmeyi amaçlamaktadır. Köpük beton, hafifliği ve yüksek ısı yalıtımı özellikleri ile bilinir ve bu araştırmada, CS çimentonun kısmi ikamesi olarak farklı oranlarda (%10, %20, %30) kullanılırken, PF ise takviye amacıyla eklenmiştir. Sonuçlar, CS içeriği arttıkça basınç ve eğilme dayanımının azaldığını, gözenekliliğin arttığını ve yoğunluğun düştüğünü göstermektedir. Bu durum, CS’nin çimentoya kıyasla daha düşük bağlayıcı özelliği ve daha yüksek su tutma kapasitesinden kaynaklanmaktadır. PF’nin eklenmesi, çatlak yayılmasını azaltarak eğilme dayanımını ve yüksek sıcaklık direncini kısmen artırsa da bu etki aşırı sıcaklıklarda azalmaktadır.

Bu bağlamda, yapı malzemelerinde atıkların kullanımı kritik bir rol oynamaktadır. Atıkların yapı malzemelerine dahil edilmesi hem çevresel hem de ekonomik faydalar sağlamaktadır. Beton çamuru gibi inşaat atıklarının yeniden kullanımı, malzeme israfını azaltmaya, doğal kaynakları korumaya ve çimento üretimine bağlı karbon emisyonlarını düşürmeye yardımcı olmaktadır. Özellikle beton üretiminde çimentonun yoğun kullanımı, sera gazı emisyonlarının artmasına yol açmaktadır. CS gibi atık malzemelerin kullanımı bu etkileri azaltabilir ve daha çevre dostu yapı malzemelerinin üretilmesini sağlayabilir.

Sonuç olarak, köpük betonda CS kullanımı çevresel açıdan umut vadederken, bu malzemelerin performansını optimize etmek hem sürdürülebilirlik hem de yapısal bütünlük açısından kritik öneme sahiptir. Bu araştırma, atık malzemelerin inşaat sektöründe kullanılmasının maliyet etkin ve ekolojik açıdan faydalı bir yaklaşım olduğunu vurgulamakta ve bu tür malzemelerin inşaat sektöründeki potansiyel uygulamalarını genişletme gereksinimini öne çıkarmaktadır.

References

  • [1] Alkaff, S. A., Sim, S. C., & Efzan, M. E. (2016). A review of underground building towards thermal energy efficiency and sustainable development. Renewable and Sustainable Energy Reviews, 60, 692-713.
  • [2] Vijayan, D. S., Sivasuriyan, A., Patchamuthu, P., & Jayaseelan, R. (2022). Thermal performance of energy-efficient buildings for sustainable development. Environmental Science and Pollution Research, 29(34), 51130-51142.
  • [3] Wang, X., Li, W., Luo, Z., Wang, K., & Shah, S. P. (2022). A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy and buildings, 260, 111923.
  • [4] Zhang, Y., Li, L., Sadiq, M., & Chien, F. (2024). The impact of non-renewable energy production and energy usage on carbon emissions: evidence from China. Energy & Environment, 35(4), 2248-2269.
  • [5] Hanif, I., Aziz, B., & Chaudhry, I. S. (2019). Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renewable Energy, 143, 586-595.
  • [6] Vural, G. (2020). How do output, trade, renewable energy and non-renewable energy impact carbon emissions in selected Sub-Saharan African Countries. Resources Policy, 69, 101840.
  • [7] González-Torres, M., Pérez-Lombard, L., Coronel, J. F., Maestre, I. R., & Yan, D. (2022). A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 8, 626-637.
  • [8] Wang, R., Feng, W., Wang, L., & Lu, S. (2021). A comprehensive evaluation of zero energy buildings in cold regions: Actual performance and key technologies of cases from China, the US, and the European Union. Energy, 215, 118992.
  • [9] Santamouris, M. (2016). Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Solar Energy, 128, 61-94.
  • [10] Pacheco, R., Ordóñez, J., & Martínez, G. (2012). Energy efficient design of building: A review. Renewable and sustainable energy reviews, 16(6), 3559-3573.
  • [11] Persily, A. K., & Emmerich, S. J. (2012). Indoor air quality in sustainable, energy efficient buildings. Hvac&R Research, 18(1-2), 4-20.
  • [12] Foo, D. C., & Tan, R. R. (2016). A review on process integration techniques for carbon emissions and environmental footprint problems. Process Safety and Environmental Protection, 103, 291-307.
  • [13] Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990.
  • [14] Tang, Z., Li, W., Tam, V. W., & Xue, C. (2020). Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resources, Conservation & Recycling: X, 6, 100036.
  • [15] Madurwar, M. V., Ralegaonkar, R. V., & Mandavgane, S. A. (2013). Application of agro-waste for sustainable construction materials: A review. Construction and Building materials, 38, 872-878.
  • [16] Shukla, B. K., Bharti, G., Sharma, P. K., Sharma, M., Rawat, S., Maurya, N., ... & Srivastav, Y. (2024). Sustainable construction practices with recycled and waste materials for a circular economy. Asian Journal of Civil Engineering, 1-22.
  • [17] Oyejobi, D. O., Firoozi, A. A., Fernandez, D. B., & Avudaiappan, S. (2024). Integrating Circular Economy Principles into Concrete Technology: Enhancing Sustainability Through Industrial Waste Utilization. Results in Engineering, 102846.
  • [18] Velenturf, A. P., & Purnell, P. (2021). Principles for a sustainable circular economy. Sustainable production and consumption, 27, 1437-1457.
  • [19] Megevand, B., Cao, W. J., Di Maio, F., & Rem, P. (2022). Circularity in practice: Review of main current approaches and strategic propositions for an efficient circular economy of materials. Sustainability, 14(2), 962.
  • [20] Abu-Jdayil, B., Mourad, A. H., Hittini, W., Hassan, M., & Hameedi, S. (2019). Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials, 214, 709-735.
  • [21] Zeng, Q., Liu, X., Zhang, Z., Wei, C., & Xu, C. C. (2023). Synergistic utilization of blast furnace slag with other industrial solid wastes in cement and concrete industry: Synergistic mechanisms, applications, and challenges. Green Energy and Resources, 1(2), 100012.
  • [22] Akhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186, 262-281.
  • [23] Hasanbeigi, A. (2012). International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry.
  • [24] Yang, S., Wang, X., Hu, Z., Li, J., Yao, X., Zhang, C., ... & Wang, W. (2023). Recent advances in sustainable lightweight foamed concrete incorporating recycled waste and byproducts: A review. Construction and Building Materials, 403, 133083.
  • [25] Gencel, O., Nodehi, M., Hekimoğlu, G., Ustaoğlu, A., Sarı, A., Kaplan, G., ... & Ozbakkaloglu, T. (2022). Foam concrete produced with recycled concrete powder and phase change materials. Sustainability, 14(12), 7458.
  • [26] Gencel, O., Kazmi, S. M. S., Munir, M. J., Kaplan, G., Bayraktar, O. Y., Yarar, D. O., ... & Ahmad, M. R. (2021). Influence of bottom ash and polypropylene fibers on the physico-mechanical, durability and thermal performance of foam concrete: An experimental investigation. Construction and Building Materials, 306, 124887.
  • [27] Wen, C., Zhang, P., Wang, J., & Hu, S. (2022). Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: A review. Journal of Building Engineering, 52, 104370.
  • [28] Zhao, J., Trindade, A. C. C., Liebscher, M., de Andrade Silva, F., & Mechtcherine, V. (2023). A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites. Cement and Concrete Composites, 137, 104885.
  • [29] Yildizel, S. A., Acik, M., Kaplan, G., & Bayraktar, O. Y. (2024). Enhancing foam concrete: A comparative analysis of PLA+ fiber reinforcements with plain, hooked, and corrugated fibers. Construction and Building Materials, 443, 137807.
  • [30] Tran, N. P., Nguyen, T. N., Ngo, T. D., Le, P. K., & Le, T. A. (2022). Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review. Journal of Cleaner Production, 375, 133939.

Production of Environmentally Friendly Foam Concrete Using Waste Material: Effects of Waste Concrete Sludge and Fiber Additives

Year 2025, Volume: 13 Issue: 4
https://doi.org/10.29109/gujsc.1612287

Abstract

This study investigates the potential of using waste concrete sludge (CS) and polypropylene fiber (PF) to improve the physico-mechanical and thermal properties of foam concrete while promoting sustainability. Foam concrete is known for its lightweight and high thermal insulation properties, and in this research, CS is used as a partial replacement for cement at varying levels (10%, 20%, 30%), while PF is added for reinforcement. The results show that as the CS content increases, the compressive and flexural strength decrease, porosity increases, and density reduces due to the lower binding properties and higher water retention capacity of CS compared to cement. The inclusion of PF partially improves flexural strength and high-temperature resistance by reducing crack propagation, but this effect diminishes at extreme temperatures. In this context, the utilization of waste in building materials plays a crucial role. Incorporating waste into construction materials provides both environmental and economic benefits. The reuse of construction waste, such as concrete sludge, helps reduce material waste, conserve natural resources, and lower the carbon emissions associated with cement production. Particularly in concrete production, the extensive use of cement contributes to increased greenhouse gas emissions. The use of waste materials like CS can mitigate these impacts and enable the production of more environmentally friendly construction materials. In conclusion, while the use of CS in foam concrete shows environmental promise, optimizing the performance of these materials is critical to ensuring both sustainability and structural integrity. This research highlights that utilizing waste materials in the construction industry is a cost-effective and ecologically beneficial approach and underscores the need to expand the potential applications of such materials in the construction sector.

Thanks

It was published in the abstract book presented at the 2nd International Symposium on Innovations in Civil Engineering and Technologies.

References

  • [1] Alkaff, S. A., Sim, S. C., & Efzan, M. E. (2016). A review of underground building towards thermal energy efficiency and sustainable development. Renewable and Sustainable Energy Reviews, 60, 692-713.
  • [2] Vijayan, D. S., Sivasuriyan, A., Patchamuthu, P., & Jayaseelan, R. (2022). Thermal performance of energy-efficient buildings for sustainable development. Environmental Science and Pollution Research, 29(34), 51130-51142.
  • [3] Wang, X., Li, W., Luo, Z., Wang, K., & Shah, S. P. (2022). A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy and buildings, 260, 111923.
  • [4] Zhang, Y., Li, L., Sadiq, M., & Chien, F. (2024). The impact of non-renewable energy production and energy usage on carbon emissions: evidence from China. Energy & Environment, 35(4), 2248-2269.
  • [5] Hanif, I., Aziz, B., & Chaudhry, I. S. (2019). Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renewable Energy, 143, 586-595.
  • [6] Vural, G. (2020). How do output, trade, renewable energy and non-renewable energy impact carbon emissions in selected Sub-Saharan African Countries. Resources Policy, 69, 101840.
  • [7] González-Torres, M., Pérez-Lombard, L., Coronel, J. F., Maestre, I. R., & Yan, D. (2022). A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 8, 626-637.
  • [8] Wang, R., Feng, W., Wang, L., & Lu, S. (2021). A comprehensive evaluation of zero energy buildings in cold regions: Actual performance and key technologies of cases from China, the US, and the European Union. Energy, 215, 118992.
  • [9] Santamouris, M. (2016). Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Solar Energy, 128, 61-94.
  • [10] Pacheco, R., Ordóñez, J., & Martínez, G. (2012). Energy efficient design of building: A review. Renewable and sustainable energy reviews, 16(6), 3559-3573.
  • [11] Persily, A. K., & Emmerich, S. J. (2012). Indoor air quality in sustainable, energy efficient buildings. Hvac&R Research, 18(1-2), 4-20.
  • [12] Foo, D. C., & Tan, R. R. (2016). A review on process integration techniques for carbon emissions and environmental footprint problems. Process Safety and Environmental Protection, 103, 291-307.
  • [13] Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990.
  • [14] Tang, Z., Li, W., Tam, V. W., & Xue, C. (2020). Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resources, Conservation & Recycling: X, 6, 100036.
  • [15] Madurwar, M. V., Ralegaonkar, R. V., & Mandavgane, S. A. (2013). Application of agro-waste for sustainable construction materials: A review. Construction and Building materials, 38, 872-878.
  • [16] Shukla, B. K., Bharti, G., Sharma, P. K., Sharma, M., Rawat, S., Maurya, N., ... & Srivastav, Y. (2024). Sustainable construction practices with recycled and waste materials for a circular economy. Asian Journal of Civil Engineering, 1-22.
  • [17] Oyejobi, D. O., Firoozi, A. A., Fernandez, D. B., & Avudaiappan, S. (2024). Integrating Circular Economy Principles into Concrete Technology: Enhancing Sustainability Through Industrial Waste Utilization. Results in Engineering, 102846.
  • [18] Velenturf, A. P., & Purnell, P. (2021). Principles for a sustainable circular economy. Sustainable production and consumption, 27, 1437-1457.
  • [19] Megevand, B., Cao, W. J., Di Maio, F., & Rem, P. (2022). Circularity in practice: Review of main current approaches and strategic propositions for an efficient circular economy of materials. Sustainability, 14(2), 962.
  • [20] Abu-Jdayil, B., Mourad, A. H., Hittini, W., Hassan, M., & Hameedi, S. (2019). Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials, 214, 709-735.
  • [21] Zeng, Q., Liu, X., Zhang, Z., Wei, C., & Xu, C. C. (2023). Synergistic utilization of blast furnace slag with other industrial solid wastes in cement and concrete industry: Synergistic mechanisms, applications, and challenges. Green Energy and Resources, 1(2), 100012.
  • [22] Akhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186, 262-281.
  • [23] Hasanbeigi, A. (2012). International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry.
  • [24] Yang, S., Wang, X., Hu, Z., Li, J., Yao, X., Zhang, C., ... & Wang, W. (2023). Recent advances in sustainable lightweight foamed concrete incorporating recycled waste and byproducts: A review. Construction and Building Materials, 403, 133083.
  • [25] Gencel, O., Nodehi, M., Hekimoğlu, G., Ustaoğlu, A., Sarı, A., Kaplan, G., ... & Ozbakkaloglu, T. (2022). Foam concrete produced with recycled concrete powder and phase change materials. Sustainability, 14(12), 7458.
  • [26] Gencel, O., Kazmi, S. M. S., Munir, M. J., Kaplan, G., Bayraktar, O. Y., Yarar, D. O., ... & Ahmad, M. R. (2021). Influence of bottom ash and polypropylene fibers on the physico-mechanical, durability and thermal performance of foam concrete: An experimental investigation. Construction and Building Materials, 306, 124887.
  • [27] Wen, C., Zhang, P., Wang, J., & Hu, S. (2022). Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: A review. Journal of Building Engineering, 52, 104370.
  • [28] Zhao, J., Trindade, A. C. C., Liebscher, M., de Andrade Silva, F., & Mechtcherine, V. (2023). A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites. Cement and Concrete Composites, 137, 104885.
  • [29] Yildizel, S. A., Acik, M., Kaplan, G., & Bayraktar, O. Y. (2024). Enhancing foam concrete: A comparative analysis of PLA+ fiber reinforcements with plain, hooked, and corrugated fibers. Construction and Building Materials, 443, 137807.
  • [30] Tran, N. P., Nguyen, T. N., Ngo, T. D., Le, P. K., & Le, T. A. (2022). Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review. Journal of Cleaner Production, 375, 133939.
There are 30 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Tasarım ve Teknoloji
Authors

İhsan Türkel 0000-0002-6841-0482

Early Pub Date October 22, 2025
Publication Date October 27, 2025
Submission Date January 2, 2025
Acceptance Date May 29, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Türkel, İ. (2025). Production of Environmentally Friendly Foam Concrete Using Waste Material: Effects of Waste Concrete Sludge and Fiber Additives. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(4). https://doi.org/10.29109/gujsc.1612287

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526