Research Article
BibTex RIS Cite

Güncel Yönetim Bilişim Sistemleri Araştırmalarının Konu Modellemesi: Bir Gizli Dirichlet Ataması Yaklaşımı

Year 2025, Volume: 16 Issue: 1, 342 - 354, 29.01.2025

Abstract

Bu araştırma, Yönetim Bilişim Sistemleri (YBS) üzerine geniş kapsamlı akademik söylemi derinlemesine incelemekte, dallarını, etkili teorileri ve çeşitli konuları araştırmaktadır. Bir konu modelleme yaklaşımı kullanan çalışma, Scopus veri tabanından (2022-2023) 7852 makale özetini Gizli Dirichlet Ataması algoritması kullanarak analiz etmektedir. Amaç, araştırma boşluklarını belirlemek ve temel ilgi alanlarını tanımlamaktır. Bulgular, makale külliyatının, her biri YBS alanındaki önemli yönleri temsil eden çeşitli tematik kategoriler halinde belirgin bir şekilde sınıflandırılabileceğini göstermektedir. Analitik sonuç, 'Dijital İnovasyon ve İş Performansı', 'Maliyet Optimizasyonu ve Talep Analizi', 'Makine Öğrenimi ve Derin Öğrenmedeki Gelişmeler', 'Yeşil Lojistik ve Tedarik Zinciri Yönetiminde Sürdürülebilir Uygulamalar', 'COVID-19 Pandemisinin İşletmelerde Sosyal Etkileşim ve Kriz Yönetimi Stratejileri Üzerindeki Etkisi', 'Karar Verme Sistemleri ve Optimizasyon Modellerinin Etkinliği' ve 'Çevrimiçi Hizmetlerde Tüketici Memnuniyeti ve Davranış Analizi' gibi yedi farklı tematik kümenin varlığını varsaymaktadır. Bu görüşler sadece YBS alanının heterojenliğini ve genişliğini vurgulamakla kalmıyor, aynı zamanda disiplinin dinamik doğasının da altını çiziyor. Elde edilen sonuçlar, gelecekteki araştırmaları yönlendirme ve YBS alanında yeni katkıları teşvik etme potansiyeline sahiptir.

Supporting Institution

TÜBİTAK | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Project Number

222K181

References

  • Ada, Ş., & Ghaffarzadeh, M. (2015). Decision making based on management information system and decision support system. European Researcher, 93(5), 260-269.
  • Aggarwal, C. C., & Zhai, C. X. (2013). Mining text data. In C. C. Aggarwal & C. X. Zhai (Eds.), Mining text data (pp. 1–10). Springer.
  • Ahmad, Z. A., Wajdi, M. F., Imronudin, & Sholahuddin, M. (2023). Research trend in supply chain financing. Journal of Business and Management Studies, 5(5), 20-28.
  • Alavi, M., & Carlson, P. (1992). A review of MIS research and disciplinary development. Journal of Management Information Systems, 8(4), 45–62.
  • Ankaralı, E., & Külcü, Ö. (2020). RapidMiner ile Twitter verilerinin konu modellemesi. Bilgi Yönetimi, 3(1), 1-10.
  • Baskerville, R. L., & Myers, M. D. (2002). Information systems as a reference discipline. MIS Quarterly, 26(1), 1-14.
  • Bawack, R. E., Wamba, S. F., Carillo, K. D. A., & Akter, S. (2022). Artificial intelligence in e-commerce: A bibliometric study and literature review. Electronic Markets.
  • Bensghir, T. K. (2002). Türkiye’de yönetim bilişim sistemleri disiplinin gelişimi üzerine düşünceler. Amme İdaresi Dergisi, 35(1), 77–103.
  • Bilge, E. Ç., & Yaman, H. (2022). Research trends analysis using text mining in construction management: 2000–2020. Engineering, Construction and Architectural Management.
  • Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4/5), 993–1022.
  • Budak, İ., & Sökmen, A. (2022). Otel hizmetlerinin değerlendirilmesinde Gizli Dirichlet Ayrımı ile analiz: Kastamonu ili örneği. Journal of Tourism and Gastronomy Studies.
  • Çallı, L., Çallı, F., & Alma Çallı, B. (2021). Topic modeling of postgraduate theses in management information systems discipline with latent Dirichlet allocation (LDA) algorithm. MANAS Journal of Social Studies, 10(4), 2355–2372.
  • Centobelli, P., Cerchione, R., Vecchio, P. Del, Oropallo, E., & Secundo, G. (2022). Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Information and Management.
  • Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. P. (2020). Introduction to machine learning, neural networks, and deep learning. Translational Vision Science and Technology, 9(2), 14.
  • Chuah, S. H. W., Aw, E. C. X., & Cheng, C. F. (2022). A silver lining in the COVID-19 cloud: Examining customers’ value perceptions, willingness to use and pay more for robotic restaurants. Journal of Hospitality Marketing and Management, 31(3), 259–283.
  • Ciriello, R. F., Richter, A., & Schwabe, G. (2018). Digital innovation. Business and Information Systems Engineering, 60(6), 563–569.
  • Cocosila, M., Serenko, A., & Turel, O. (2011). Exploring the management information systems discipline: A scientometric study of ICIS, PACIS and ASAC. Scientometrics, 87(1), 1-16.
  • Cooper, R. B. (1988). Review of management information systems research: A management support emphasis. Information Processing and Management, 24(1), 73–102.
  • Culnan, M. J. (1986). The intellectual development of management information systems, 1972–1982: A co-citation analysis. Management Science, 32(2), 156–172.
  • Culnan, M. J., & Swanson, E. B. (1986). Research in management information systems, 1980-1984: Points of work and reference. MIS Quarterly, 10(3), 289–302.
  • De Rezende, L. B., Blackwell, P., & Pessanha Gonçalves, M. D. (2018). Research focuses, trends, and major findings on project complexity: A bibliometric network analysis of 50 years of project complexity research. Project Management Journal, 49(1), 42–65.
  • Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M., Dennehy, D., Metri, B., Buhalis, D., Cheung, C. M. K., Conboy, K., Doyle, R., Dubey, R., Dutot, V., Felix, R., Goyal, D. P., Gustafsson, A., Hinsch, C., Jebabli, I., ... Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management, 66, 102542.
  • Ekinci, E., & Omurca, S. İ. (2017). Product aspect extraction with topic model. TBV Journal of Computer Science and Engineering, 7(2), 1-11.
  • Farhoomand, A. F. (1987). Scientific progress of management information systems. ACM SIGMIS Database, 18(4), 48–56.
  • Fasth, J., Elliot, V., & Styhre, A. (2022). Crisis management as practice in small- and medium-sized enterprises during the first period of COVID-19. Journal of Contingencies and Crisis Management, 30(1), 54–65.
  • Gao, B., & Huang, L. (2019). Understanding interactive user behavior in smart media content service: An integration of TAM and smart service belief factors. Heliyon, 5(11), e02983.
  • Gencoglu, B., Helms-Lorenz, M., Maulana, R., Jansen, E. P. W. A., & Gencoglu, O. (2023). Machine and expert judgments of student perceptions of teaching behavior in secondary education: Added value of topic modeling with big data. Computers and Education, 193, 104682.
  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(Suppl 1), 5228–5235.
  • Gurcan, F., Ayaz, A., Menekse Dalveren, G. G., & Derawi, M. (2023). Business intelligence strategies, best practices, and latest trends: Analysis of scientometric data from 2003 to 2023 using machine learning. Sustainability, 15(13), 9854.
  • Gurcan, F., & Cagiltay, N. E. (2022). Exploratory analysis of topic interests and their evolution in bioinformatics research using semantic text mining and probabilistic topic modeling. IEEE Access, 10, 31480–31493.
  • Gurcan, F., Ozyurt, O., & Cagiltay, N. E. (2021). Investigation of emerging trends in the e-learning field using latent Dirichlet allocation. International Review of Research in Open and Distance Learning, 22(2), 1–18.
  • Hamilton, S., & Ives, B. (1982). The journal communication system for MIS research. ACM SIGMIS Database, 14(2), 3–14.
  • Hashim, F. A., & Hussien, A. G. (2022). Snake optimizer: A novel meta-heuristic optimization algorithm. Knowledge-Based Systems, 240, 108320.
  • Hu, Y., Boyd-Graber, J., Satinoff, B., & Smith, A. (2014). Interactive topic modeling. Machine Learning, 95(3), 423–469. Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169–15211.
  • Kaidi, W., Khishe, M., & Mohammadi, M. (2022). Dynamic Levy Flight Chimp Optimization. Knowledge-Based Systems, 237, 107625.
  • Kang, J., Kim, S., & Roh, S. (2019). A topic modeling analysis for online news article comments on nurses’ workplace bullying. Journal of Korean Academy of Nursing, 49(6), 736–747.
  • Kumar, A. (2015). Green logistics for sustainable development: An analytical review. IOSRD International Journal of Business, 1(1), 1-10.
  • Lal, B., Dwivedi, Y. K., & Haag, M. (2023). Working from home during Covid-19: Doing and managing technology-enabled social interaction with colleagues at a distance. Information Systems Frontiers, 25(2), 405–425.
  • Laudon, K. C., & Laudon, J. P. (2012). Management information systems: Managing the digital firm (12th ed.). Pearson.
  • Li, L., Chi, T., Hao, T., & Yu, T. (2018). Customer demand analysis of the electronic commerce supply chain using big data. Annals of Operations Research, 268(1), 113–128.
  • Liang, B., Su, H., Gui, L., Cambria, E., & Xu, R. (2022). Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowledge-Based Systems, 237, 107643.
  • Lu, C. Y., Suhartanto, D., Gunawan, A. I., & Chen, B. T. (2020). Customer satisfaction toward online purchasing services: Evidence from small & medium restaurants. International Journal of Applied Business Research, 2(1), 12-20.
  • Mas-Tur, A., Kraus, S., Brandtner, M., Ewert, R., & Kürsten, W. (2020). Advances in management research: A bibliometric overview of the Review of Managerial Science. Review of Managerial Science, 14(5), 933-958.
  • Mejia, C., Wu, M., Zhang, Y., & Kajikawa, Y. (2021). Exploring topics in bibliometric research through citation networks and semantic analysis. Frontiers in Research Metrics and Analytics, 6, 742311.
  • Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., & Zacharia, Z. G. (2001). Defining supply chain management. Journal of Business Logistics, 22(2), 1-25.
  • Mohanty, B. (2014). Management Information Systems Quarterly (MISQ): A bibliometric study. Library Philosophy and Practice, 2014(1), 1-16.
  • Mohanty, B., & Sahoo, J. (2016). The intellectual parterns of management information system research: A bibliometric study on International Journal of Management Reviews. Library Philosophy and Practice, 2016(1), 1-22.
  • Mukherjee, D., Lim, W. M., Kumar, S., & Donthu, N. (2022b). Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, 101–115.
  • Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., Malík, P., & Hluchý, L. (2019). Machine learning and deep learning frameworks and libraries for large-scale data mining: A survey. Artificial Intelligence Review, 52(1), 77-124.
  • Nili, M., Seyedhosseini, S. M., Jabalameli, M. S., & Dehghani, E. (2021). A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran. Renewable and Sustainable Energy Reviews, 149, 111428.
  • Oosthuizen, R. (2021). Developing a topic network of published systems engineering research. INCOSE International Symposium, 31(1), 1316-1329.
  • Özköse, H., Ozyurt, O., & Ayaz, A. (2023). Management information systems research: A topic modeling based bibliometric analysis. Journal of Computer Information Systems, 63(5), 1166–1182.
  • Ozyurt, O., & Ayaz, A. (2022). Twenty-five years of education and information technologies: Insights from a topic modeling based bibliometric analysis. Education and Information Technologies, 27(8), 11025–11054.
  • Panjota, F. G., Songmene, V., Kenné, J.-P., Olufayo, O. A., & Ayomoh, M. (2018). Development of a tool cost optimization model for stochastic demand of machined products. Applied Mathematics, 9(12), 1395–1423.
  • Pathan, A. F., & Prakash, C. (2021). Unsupervised aspect extraction algorithm for opinion mining using topic modeling. Global Transitions Proceedings, 2(2), 129-137.
  • Prabhakaran, S. (2018). Topic modeling with Gensim (Python). Machine Learning Plus. Retrieved from https://www.machinelearningplus.com.
  • Rita, P., Oliveira, T., & Farisa, A. (2019). The impact of e-service quality and customer satisfaction on customer behavior in online shopping. Heliyon, 5(10), e02690.
  • Sheriff, N., & Sevukan, R. (2023). Discovering research data management trends from job advertisements using a text-mining approach. Journal of Information Science, 49(4), 453–466.
  • Suriyankietkaew, S., & Petison, P. (2020). A retrospective and foresight: Bibliometric review of international research on strategic management for sustainability, 1991–2019. Sustainability, 12(1), 91.
  • Yang, J., Xiu, P., Sun, L., Ying, L., & Muthu, B. (2022). Social media data analytics for business decision making system to competitive analysis. Information Processing and Management, 59(1), 102751.
  • Yang, Y., Liu, Y., Lv, X., Ai, J., & Li, Y. (2022). Anthropomorphism and customers’ willingness to use artificial intelligence service agents. Journal of Hospitality Marketing and Management, 31(3), 284–309.
  • Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big data: Opportunities and challenges. Neurocomputing, 237, 350–361.

Topic Modelling of Contemporary Management Information Systems Research: A Latent Dirichlet Allocation Approach

Year 2025, Volume: 16 Issue: 1, 342 - 354, 29.01.2025

Abstract

This research thoroughly explores the expansive academic discourse on Management Information Systems (MIS), investigating its branches, influential theories, and diverse topics. Employing a topic modeling approach, the study analyzes 7852 article abstracts from the Scopus database (2022-2023) using the Latent Dirichlet Allocation algorithm. The goal is to identify research gaps and delineate key areas of interest. The findings suggest that the corpus of articles can be distinctly classified into varied thematic categories, each representing significant facets within the MIS domain. The analytical outcome postulates the existence of seven distinct thematic clusters such as “Digital Innovation and Business Performance”, “Cost Optimization and Demand Analysis”, “Advancements in Machine Learning and Deep Learning”, “Sustainable Practices in Green Logistics and Supply Chain Management”, “Impact of the COVID-19 Pandemic on Social Interaction and Crisis Management Strategies in Businesses”, “Decision Making Systems and the Efficacy of Optimization Models”, and “Consumer Satisfaction and Behavioral Analysis in Online Services”. These insights not only underscore the heterogeneity and breadth of the MIS field but also underscore the dynamic nature of the discipline. The derived results hold the potential to steer future inquiries and foster novel contributions within the realm of MIS.

Project Number

222K181

References

  • Ada, Ş., & Ghaffarzadeh, M. (2015). Decision making based on management information system and decision support system. European Researcher, 93(5), 260-269.
  • Aggarwal, C. C., & Zhai, C. X. (2013). Mining text data. In C. C. Aggarwal & C. X. Zhai (Eds.), Mining text data (pp. 1–10). Springer.
  • Ahmad, Z. A., Wajdi, M. F., Imronudin, & Sholahuddin, M. (2023). Research trend in supply chain financing. Journal of Business and Management Studies, 5(5), 20-28.
  • Alavi, M., & Carlson, P. (1992). A review of MIS research and disciplinary development. Journal of Management Information Systems, 8(4), 45–62.
  • Ankaralı, E., & Külcü, Ö. (2020). RapidMiner ile Twitter verilerinin konu modellemesi. Bilgi Yönetimi, 3(1), 1-10.
  • Baskerville, R. L., & Myers, M. D. (2002). Information systems as a reference discipline. MIS Quarterly, 26(1), 1-14.
  • Bawack, R. E., Wamba, S. F., Carillo, K. D. A., & Akter, S. (2022). Artificial intelligence in e-commerce: A bibliometric study and literature review. Electronic Markets.
  • Bensghir, T. K. (2002). Türkiye’de yönetim bilişim sistemleri disiplinin gelişimi üzerine düşünceler. Amme İdaresi Dergisi, 35(1), 77–103.
  • Bilge, E. Ç., & Yaman, H. (2022). Research trends analysis using text mining in construction management: 2000–2020. Engineering, Construction and Architectural Management.
  • Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4/5), 993–1022.
  • Budak, İ., & Sökmen, A. (2022). Otel hizmetlerinin değerlendirilmesinde Gizli Dirichlet Ayrımı ile analiz: Kastamonu ili örneği. Journal of Tourism and Gastronomy Studies.
  • Çallı, L., Çallı, F., & Alma Çallı, B. (2021). Topic modeling of postgraduate theses in management information systems discipline with latent Dirichlet allocation (LDA) algorithm. MANAS Journal of Social Studies, 10(4), 2355–2372.
  • Centobelli, P., Cerchione, R., Vecchio, P. Del, Oropallo, E., & Secundo, G. (2022). Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Information and Management.
  • Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. P. (2020). Introduction to machine learning, neural networks, and deep learning. Translational Vision Science and Technology, 9(2), 14.
  • Chuah, S. H. W., Aw, E. C. X., & Cheng, C. F. (2022). A silver lining in the COVID-19 cloud: Examining customers’ value perceptions, willingness to use and pay more for robotic restaurants. Journal of Hospitality Marketing and Management, 31(3), 259–283.
  • Ciriello, R. F., Richter, A., & Schwabe, G. (2018). Digital innovation. Business and Information Systems Engineering, 60(6), 563–569.
  • Cocosila, M., Serenko, A., & Turel, O. (2011). Exploring the management information systems discipline: A scientometric study of ICIS, PACIS and ASAC. Scientometrics, 87(1), 1-16.
  • Cooper, R. B. (1988). Review of management information systems research: A management support emphasis. Information Processing and Management, 24(1), 73–102.
  • Culnan, M. J. (1986). The intellectual development of management information systems, 1972–1982: A co-citation analysis. Management Science, 32(2), 156–172.
  • Culnan, M. J., & Swanson, E. B. (1986). Research in management information systems, 1980-1984: Points of work and reference. MIS Quarterly, 10(3), 289–302.
  • De Rezende, L. B., Blackwell, P., & Pessanha Gonçalves, M. D. (2018). Research focuses, trends, and major findings on project complexity: A bibliometric network analysis of 50 years of project complexity research. Project Management Journal, 49(1), 42–65.
  • Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M., Dennehy, D., Metri, B., Buhalis, D., Cheung, C. M. K., Conboy, K., Doyle, R., Dubey, R., Dutot, V., Felix, R., Goyal, D. P., Gustafsson, A., Hinsch, C., Jebabli, I., ... Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management, 66, 102542.
  • Ekinci, E., & Omurca, S. İ. (2017). Product aspect extraction with topic model. TBV Journal of Computer Science and Engineering, 7(2), 1-11.
  • Farhoomand, A. F. (1987). Scientific progress of management information systems. ACM SIGMIS Database, 18(4), 48–56.
  • Fasth, J., Elliot, V., & Styhre, A. (2022). Crisis management as practice in small- and medium-sized enterprises during the first period of COVID-19. Journal of Contingencies and Crisis Management, 30(1), 54–65.
  • Gao, B., & Huang, L. (2019). Understanding interactive user behavior in smart media content service: An integration of TAM and smart service belief factors. Heliyon, 5(11), e02983.
  • Gencoglu, B., Helms-Lorenz, M., Maulana, R., Jansen, E. P. W. A., & Gencoglu, O. (2023). Machine and expert judgments of student perceptions of teaching behavior in secondary education: Added value of topic modeling with big data. Computers and Education, 193, 104682.
  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(Suppl 1), 5228–5235.
  • Gurcan, F., Ayaz, A., Menekse Dalveren, G. G., & Derawi, M. (2023). Business intelligence strategies, best practices, and latest trends: Analysis of scientometric data from 2003 to 2023 using machine learning. Sustainability, 15(13), 9854.
  • Gurcan, F., & Cagiltay, N. E. (2022). Exploratory analysis of topic interests and their evolution in bioinformatics research using semantic text mining and probabilistic topic modeling. IEEE Access, 10, 31480–31493.
  • Gurcan, F., Ozyurt, O., & Cagiltay, N. E. (2021). Investigation of emerging trends in the e-learning field using latent Dirichlet allocation. International Review of Research in Open and Distance Learning, 22(2), 1–18.
  • Hamilton, S., & Ives, B. (1982). The journal communication system for MIS research. ACM SIGMIS Database, 14(2), 3–14.
  • Hashim, F. A., & Hussien, A. G. (2022). Snake optimizer: A novel meta-heuristic optimization algorithm. Knowledge-Based Systems, 240, 108320.
  • Hu, Y., Boyd-Graber, J., Satinoff, B., & Smith, A. (2014). Interactive topic modeling. Machine Learning, 95(3), 423–469. Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169–15211.
  • Kaidi, W., Khishe, M., & Mohammadi, M. (2022). Dynamic Levy Flight Chimp Optimization. Knowledge-Based Systems, 237, 107625.
  • Kang, J., Kim, S., & Roh, S. (2019). A topic modeling analysis for online news article comments on nurses’ workplace bullying. Journal of Korean Academy of Nursing, 49(6), 736–747.
  • Kumar, A. (2015). Green logistics for sustainable development: An analytical review. IOSRD International Journal of Business, 1(1), 1-10.
  • Lal, B., Dwivedi, Y. K., & Haag, M. (2023). Working from home during Covid-19: Doing and managing technology-enabled social interaction with colleagues at a distance. Information Systems Frontiers, 25(2), 405–425.
  • Laudon, K. C., & Laudon, J. P. (2012). Management information systems: Managing the digital firm (12th ed.). Pearson.
  • Li, L., Chi, T., Hao, T., & Yu, T. (2018). Customer demand analysis of the electronic commerce supply chain using big data. Annals of Operations Research, 268(1), 113–128.
  • Liang, B., Su, H., Gui, L., Cambria, E., & Xu, R. (2022). Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowledge-Based Systems, 237, 107643.
  • Lu, C. Y., Suhartanto, D., Gunawan, A. I., & Chen, B. T. (2020). Customer satisfaction toward online purchasing services: Evidence from small & medium restaurants. International Journal of Applied Business Research, 2(1), 12-20.
  • Mas-Tur, A., Kraus, S., Brandtner, M., Ewert, R., & Kürsten, W. (2020). Advances in management research: A bibliometric overview of the Review of Managerial Science. Review of Managerial Science, 14(5), 933-958.
  • Mejia, C., Wu, M., Zhang, Y., & Kajikawa, Y. (2021). Exploring topics in bibliometric research through citation networks and semantic analysis. Frontiers in Research Metrics and Analytics, 6, 742311.
  • Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., & Zacharia, Z. G. (2001). Defining supply chain management. Journal of Business Logistics, 22(2), 1-25.
  • Mohanty, B. (2014). Management Information Systems Quarterly (MISQ): A bibliometric study. Library Philosophy and Practice, 2014(1), 1-16.
  • Mohanty, B., & Sahoo, J. (2016). The intellectual parterns of management information system research: A bibliometric study on International Journal of Management Reviews. Library Philosophy and Practice, 2016(1), 1-22.
  • Mukherjee, D., Lim, W. M., Kumar, S., & Donthu, N. (2022b). Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, 101–115.
  • Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., Malík, P., & Hluchý, L. (2019). Machine learning and deep learning frameworks and libraries for large-scale data mining: A survey. Artificial Intelligence Review, 52(1), 77-124.
  • Nili, M., Seyedhosseini, S. M., Jabalameli, M. S., & Dehghani, E. (2021). A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran. Renewable and Sustainable Energy Reviews, 149, 111428.
  • Oosthuizen, R. (2021). Developing a topic network of published systems engineering research. INCOSE International Symposium, 31(1), 1316-1329.
  • Özköse, H., Ozyurt, O., & Ayaz, A. (2023). Management information systems research: A topic modeling based bibliometric analysis. Journal of Computer Information Systems, 63(5), 1166–1182.
  • Ozyurt, O., & Ayaz, A. (2022). Twenty-five years of education and information technologies: Insights from a topic modeling based bibliometric analysis. Education and Information Technologies, 27(8), 11025–11054.
  • Panjota, F. G., Songmene, V., Kenné, J.-P., Olufayo, O. A., & Ayomoh, M. (2018). Development of a tool cost optimization model for stochastic demand of machined products. Applied Mathematics, 9(12), 1395–1423.
  • Pathan, A. F., & Prakash, C. (2021). Unsupervised aspect extraction algorithm for opinion mining using topic modeling. Global Transitions Proceedings, 2(2), 129-137.
  • Prabhakaran, S. (2018). Topic modeling with Gensim (Python). Machine Learning Plus. Retrieved from https://www.machinelearningplus.com.
  • Rita, P., Oliveira, T., & Farisa, A. (2019). The impact of e-service quality and customer satisfaction on customer behavior in online shopping. Heliyon, 5(10), e02690.
  • Sheriff, N., & Sevukan, R. (2023). Discovering research data management trends from job advertisements using a text-mining approach. Journal of Information Science, 49(4), 453–466.
  • Suriyankietkaew, S., & Petison, P. (2020). A retrospective and foresight: Bibliometric review of international research on strategic management for sustainability, 1991–2019. Sustainability, 12(1), 91.
  • Yang, J., Xiu, P., Sun, L., Ying, L., & Muthu, B. (2022). Social media data analytics for business decision making system to competitive analysis. Information Processing and Management, 59(1), 102751.
  • Yang, Y., Liu, Y., Lv, X., Ai, J., & Li, Y. (2022). Anthropomorphism and customers’ willingness to use artificial intelligence service agents. Journal of Hospitality Marketing and Management, 31(3), 284–309.
  • Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big data: Opportunities and challenges. Neurocomputing, 237, 350–361.
There are 63 citations in total.

Details

Primary Language English
Subjects Natural Language Processing
Journal Section Articles
Authors

Ahmet Ayaz 0000-0003-1405-0546

Ahmet Kamil Kabakuş 0000-0003-3209-0672

Üstün Özen 0000-0002-7595-4306

Ömer Alkan 0000-0002-3814-3539

Serdar Aydın 0000-0003-4943-3272

Project Number 222K181
Publication Date January 29, 2025
Submission Date October 8, 2024
Acceptance Date January 26, 2025
Published in Issue Year 2025 Volume: 16 Issue: 1

Cite

APA Ayaz, A., Kabakuş, A. K., Özen, Ü., Alkan, Ö., et al. (2025). Topic Modelling of Contemporary Management Information Systems Research: A Latent Dirichlet Allocation Approach. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 16(1), 342-354.