Review
BibTex RIS Cite

Use of synthetic inorganic ion exchangers in strontium removal

Year 2022, , 964 - 981, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1011693

Abstract

Strontium-90 is the most dangerous radioactive isotope of strontium, which is formed during the operation of nuclear reactors. It can also spread to the environment due to fallout from nuclear accidents and nuclear weapons tests. Removal of hazardous radionuclides and safe management of radioactive waste is a vital necessity. Ion exchange has been one of the most used methods in the management of liquid radioactive waste. Inorganic ion exchangers stand out for their thermal, chemical and radiation resistance. They show selectivity for certain cations. This review focused on removal of 90Sr by synthetic inorganic ion exchangers such as zeolites, titanates, titanosilicates, other acid salts, hydrous oxides and metal sulfides. Overall, more than 100 publications are reviewed and detailed data on strontium removal using inorganic ion exchangers are presented.

References

  • Abdel-Rahman, R. O., Ibrahim, H. A., Hanafy, M., & Abdel-Monem, N. M. (2010). Assessment of synthetic zeolite NaA-X as sorbing barrier for strontium in a radioactive disposal facility. Chemical Engineering Journal, 157(1), 100-112. https://doi.org/10.1016/j.cej.2009.10.057
  • Ahmadi, S. J., Akbari, N., Shiri-Yekta, Z., Mashhadizadeh, M. H., & Pourmatin, A. (2014). Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2–ZrO2 composite: A new inorganic ion exchanger. Journal of Radioanalytical and Nuclear Chemistry, 299, 1701-1707. https://doi.org/10.1007/s10967-013-2852-9
  • Ahmadi, S. J., Akbari, N., Shiri-Yekta, Z., Mashhadizadeh, M. H., & Hosseinpour, M. (2015). Removal of strontium ions from nuclear waste using synthesized MnO2-ZrO2 nano-composite by hydrothermal method in supercritical condition. Korean Journal of Chemical Engineering, 32(3), 478-485. https://doi.org/10.1007/s10967-013-2852-9
  • Ambashta, R. D., & Sillanpää, M. E. T. (2012). Membrane purification in radioactive waste management: A short review. Journal of Environmental Radioactivity, 105, 76-84. https://doi.org/10.1016/j.jenvrad.2011.12.002
  • Amesh, P., Suneesh, A. S., Venkatesan, K. A., Maheswari, R. U., & Vijayalakshmi, S. (2020). Preparation and ion exchange studies of cesium and strontium on sodium iron titanate. Separation and Purification Technology, 238, 116393. https://doi.org/10.1016/j.seppur.2019.116393
  • Anthony, R. G., Dosch, R. G., Gu, D., & Philip, C. V. (1994). Use of silicotitanates for removing cesium and strontium from defense waste. Industrial & Engineering Chemical Research, 33(11), 2702-2705. https://doi.org/10.1021/ie00035a020
  • Awual, M. R., Suzuki, S., Taguchi, T., Shiwaku, H., Okamoto, Y., & Yaita, T. (2014). Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chemical Engineering Journal, 242, 127-135. https://doi.org/10.1016/j.cej.2013.12.072
  • Baisden, P. A., & Atkins-Duffi, C. E. (2011). Radioactive waste management. In A. Vertes, S. Nagy, Z. Klencsar, R. G. Lovas, & F. Rosch (Eds.), Handbook of Nuclear Chemistry. Springer.
  • Barkat, M., Nibou, D., Amokrane, S., Chegrouche, S., & Mellah, A. (2015). Uranium (VI) adsorption on synthesized 4A and P1 zeolites: Equilibrium, kinetic, and thermodynamic studies. Comptes Rendus Chimie, 18(3), 261-269. https://doi.org/10.1016/j.crci.2014.09.011
  • Behrens, E. A., Sylvester, P., & Clearfield, A. (1998). Assessment of a sodium nonatitanate and pharmacosiderite.-type ion exchangers for strontium and cesium removal from DOE waste simulants. Journal of Environmental Science and Technology, 32(1), 101-107. https://doi.org/10.1021/ES9704794
  • Camacho, L. M., Deng, S., & Parra, R. R. (2010). Uranium removal from groundwater by natural clinoptilolite zeolite: Effects of pH and initial feed concentration. Journal of Hazardous Materials, 175(1-3), 393-398. https://doi.org/10.1016/j.jhazmat.2009.10.017
  • Chitra, S., Shanmugamani, A. G., Sudh, R., Kalavathi, S., & Paul, B. (2017). Selective removal of cesium and strontium by crystalline silicotitanates. Journal of Radioanalytical and Nuclear Chemistry, 312, 507-515. https://doi.org/10.1007/s10967-017-5249-3
  • Clearfield, A. (2000). Inorganic ion exchangers, past, present, and future. Solvent Extraction and Ion Exchange, 18(4), 655-678. https://doi.org/10.1080/07366290008934702
  • Clearfield, A., Medvedev, D. G., Kerlegon, S., Bosser, T., Burns, J. D., & Jackson, M. (2012). Rates of exchange of Cs+ and Sr2+ for poorly crystalline sodium titanium silicate (CST) in nuclear waste systems. Solvent Extraction and Ion Exchange, 30(3), 229-243. https://doi.org/10.1080/07366299.2011.639256
  • Çiçek, E., Cojocaru, C., Zakrzewska-Trznadel, G., Harasimowicz, M., & Miskiewicz, A. (2012). Response surface methodology for the modelling of 85Sr adsorption on zeolite 3A and pumice. Environmental Technology, 33(1), 51-59. https://doi.org/10.1080/09593330.2010.549514
  • Dyer, A., Pillinger, M., Newton, J., Harjula, R., Möller, T., & Amin, S. (2000). Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chemistry of Materials, 12(12), 3798-3804. https://doi.org/10.1021/cm001142v
  • El-Latif, M. M. A., & Elkady, M. F. (2011). Synthesis, characterization and evaluation of nano-zirconium vanadate ion exchanger by using three different preparation techniques. Materials Research Bulletin, 46(1), 105-118. https://doi.org/10.1016/j.materresbull.2010.09.032
  • Fang, X-H., Fang, F., Lu, C-H., & Zheng, L. (2017). Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites. Nuclear Engineering and Technology, 49(3), 556-561. https://doi.org/10.1016/j.net.2016.11.008
  • Figueiredo, B. R., Cardoso, S. P., Portugal, I., Rocha, J., & Silva, C. M. (2018). Inorganic ion exchangers for cesium removal from radioactive wastewater. Separation and Purification Reviews, 47(4), 306-336. https://doi.org/10.1080/15422119.2017.1392974
  • Guevar, C., Hertz, A., Brackx, E., Barre, Y., & Grandjean, A. (2017). Mechanisms of strontium removal by a Ba-titanate material for the wastewater treatment. Journal of Environmental Chemical Engineering, 5(5), 4948-4957. https://doi.org/10.1016/j.jece.2017.09.024
  • Gürboğa, G., & Tel, H. (2005). Preparation of TiO2-SiO2 mixed gel spheres for strontium adsorption. Journal of Hazardous Materials, 120(1-3), 135-142. https://doi.org/10.1016/j.jhazmat.2004.12.037
  • Hamed, M. M., Holiel, M., & Ahmed, I. M. (2016). Sorption behavior of cesium, cobalt and europium radionuclides onto hydroxyl magnesium silicate. Radiochimica Acta, 104(12), 873-890. https://doi.org/10.1515/ract-2016-2579
  • ISO-International Organization for Standartization. (2021, 10 Ekim). ISO/DIS 13160(en) Water quality-strontium 90 and strontium 89-test methods using liquid scintillation counting or proportional counting. https://www.iso.org/standard/78205.html
  • Ivanets, A., Radkevich,·A., Shashkova, I., Kitikova, N., Zarubo, A., & Venhlinskaya, E. (2021). Study of dynamic adsorption and desorption kinetics of cesium, strontium, cobalt radionuclides on granular phosphate adsorbent. Journal of Radioanalytical Nuclear Chemistry, 327, 1291-1298. https://doi.org/10.1007/s10967-020-07584-w
  • İnan, S., & Altaş, Y. (2010). Adsorption of strontium from acidic waste solution by Mn–Zr mixed hydrous oxide prepared by co-precipitation. Separation Science and Technology, 45(2), 269-276. https://doi.org/10.1080/01496390903409666
  • İnan, S., Tel, H., & Altaş, Y. (2006). Sorption studies of strontium on hydrous zirconium dioxide. Journal of Radioanalytical and Nuclear Chemistry, 267(3), 615-621. https://doi.org/10.1007/s10967-006-0094-9
  • Jia, F., Li, J., Wang, J., & Sun, Y. (2017). Removal of strontium ions from simulated radioactive wastewater by vacuum membrane distillation. Annals of Nuclear Energy, 103, 363-368. https://doi.org/10.1016/j.anucene.2017.02.003
  • Jimenez-Reyes, M., Almazan-Sanchez, P. T., & Solache-Rios, M. (2021). Radioactive waste treatments by using zeolites. A short review. Journal of Environmental Radioactivity, 233, 106610. https://doi.org/10.1016/j.jenvrad.2021.106610
  • Jozdani, S. M. B., Nilchi, A., & Abdolmohammadi, S. (2019). Disposal of cesium ion from wastewater using biocompatible titanate nanotube. Desalination and Water Treatment, 138, 219-229. https://doi.org/10.5004/dwt.2019.23335
  • Korneikov, R. I., & Ivanenko, V. I. (2020). Extraction of cesium and strontium cations from solutions by titanium(IV) phosphate-based ion exchangers. Inorganic Materials, 56(5), 528-532. https://doi.org/10.1134/S0020168520050088
  • Krishna, M. V. B., Rao, S., Arunachalam, J., Murali, M., Kumar, S., & Manchanda, V. (2004). Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent. Separation and Purification Technology, 38(2), 149-161. https://doi.org/10.1016/j.seppur.2003.11.002
  • Krol, M. (2020). Natural vs. synthetic zeolites. Crystals, 10(7), 622. https://doi.org/10.3390/cryst10070622
  • Kumar, J. R., Kim, J-S., Lee, J-Y., & Yoon, H-S. (2011). A brief review on solvent extraction of uranium from acidic solutions. Separation and Purification Reviews, 40(2), 77-125. https://doi.org/10.1080/15422119.2010.549760
  • Lehto, J., & Clearfield, A. (1987). The ion exchange of strontium on sodium titanate Na4Ti9O20-xH2O. Journal of Radioanalytical and Nuclear Chemistry Letters, 118(1), 1-13. https://doi.org/10.1007/BF02165649
  • Lehto, J., Bordkin, L., Harjula, R., & Tusa, E. (1999). Separation of radioactive strontium from alkaline nuclear waste solutions with the highly effective ion exchanger SrTreat. Nuclear Technology, 127(1), 81-87. https://doi.org/10.13182/NT99-A2985
  • Levenets, V. V., Lonin, A. Y., Omelnik, O. P., & Shchur, A. O. (2016). Comparison the sorption properties of clinoptilolite and synthetic zeolite during sorption strontium from the water solutions in static conditions: Sorption and quantitative determination of strontium by the method PIXE. Journal of Environmental Chemical Engineering, 4(4), 3961-3966. https://doi.org/10.1016/j.jece.2016.09.011
  • Li, H., Huang, Y., Liu, J., & Duan, H. (2021). Hydrothermally synthesized titanate nanomaterials for the removal of heavy metals and radionuclides from water: A review. Chemosphere, 282, 131046. https://doi.org/10.1016/j.chemosphere.2021.131046
  • Li, J., Wang, X., Yuan, B., & Fu, M. (2014a). Layered chalcogenide for Cu2+ removal by ion exchange from wastewater. Journal of Molecular Liquids, 200, 205-212. https://doi.org/10.1016/j.molliq.2014.09.008
  • Li, J., Wang, X., Yuan, B., Fu, M., & Cui, H. (2014b). Robust removal of heavy metals from water by intercalation chalcogenide [CH3NH3]2xMnxSn3-xS6∙0.5H2O. Applied Surface Science, 320, 112-119. https://doi.org/10.1016/j.apsusc.2014.09.057
  • Li, X., Mu, W., Xie, X., Liu, B., Tang, H., Zhou, G., Wei, H., Jian, Y., & Lou, S. (2014). Strontium adsorption on tantalum-doped hexagonal tungsten oxide. Journal of Hazardous Materials, 264, 386-394. https://doi.org/10.1016/j.jhazmat.2013.11.032
  • Liang, C., Jia, M., Wang, X., Du, Z., Men, J., & Ding, H. (2019). Preparation of potassium niobium sulfide and its selective adsorption properties for Sr2+ and Co2+. Journal of Radioanalytical and Nuclear Chemistry, 322, 377-387. https://doi.org/10.1007/s10967-019-06685-5
  • Logunov, M. V., Skobtsov, A. S., Soldatov, B. V., Pazdnikov, A. P., Voroshilov, Y. A., & Rovny, S. I. (2004). Research and application of inorganic selective sorbents at Mayak PA. Comptes Rendus Chimie, 7(12), 1185-1190. http://dx.doi.org/10.1016/j.crci.2004.05.006
  • Lopes, C. B., Lito, P. F., Otero, M., Lin, Z., Rocha, J., Silva, C. M., Pereira, E., & Duarte, A. C. (2008). Mercury removal with titanosilicate ETS-4: Batch experiments and modelling. Microporous and Mesoporous Materials, 115(1-2), 98-105. https://doi.org/10.1016/j.micromeso.2007.10.055
  • Luo, X., & Wang, J. (2014). Study on radioactive wastewater treatment by precipitation and membrane separation. Applied Mechanics and Materials, 490-491, 972-975. https://doi.org/10.4028/www.scientific.net/AMM.490-491.972
  • Luo, X., Zhang, G., Wang, X. , & Gu, P. (2013). Research on a pellet coprecipitation micro-filtration process for the treatment of liquid waste containing strontium. Journal of Radioanalytical and Nuclear Chemistry, 298(2), 931-939. https://doi.org/10.1007/s10967-013-2495-x
  • Manos, M. J., & Kanatzidis, M. G. (2016). Metal sulfide ion exchangers: superior sorbents for the capture of toxic and nuclear waste-related metal ions. Chemical Science, 7(8), 4804-4824. https://doi.org/10.1039/C6SC01039C
  • Manos, M. J., Iyer, R. G., Quarez, E., Liao, J. H., & Kanatzidis, M. G. (2005). {Sn[Zn4Sn4S17]}6–: A robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10– clusters with ion-exchange properties. Angewandte Chemie International Edition, 44(23), 3552-3555. https://doi.org/10.1002/anie.200500214
  • Manos, M. J., Chrissafis, K., & Kanatzidis, M. G. (2006). Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn [Zn4Sn4S17]. Journal of American Chemical Society, 128(27), 8875-8883. https://doi.org/10.1021/ja061342t
  • Manos, M. J., & Kanatzidis, M. G. (2009). Sequestration of heavy metals from water with layered metal sulfides. Chemistry-A European Journal, 15(19), 4779-4784. https://doi.org/10.1002/chem.200900353
  • Manos, M. J., & Kanatzidis, M. G. (2012). Layered metal sulfides capture uranium from seawater. Journal of American Chemical Society, 134(39), 16441-16446. https://doi.org/10.1021/ja308028n
  • Manos, M. J., Ding, N., & Kanatzidis, M. G. (2008). Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3696-3699. https://doi.org/10.1073/pnas.0711528105
  • Marinin, D. V., & Brown, G. N. (2000). Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management, 20(7), 545-553. https://doi.org/10.1016/S0956-053X(00)00017-9
  • Mertz, J. L., Fard, Z. H., Malliakas, C. D., Manos, M. J., & Kanatzidis, M. G. (2013). Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x=0.5-1) (KMS-2) relevant to nuclear waste remediation. Chemistry of Materials, 25(10), 2116-2127. https://doi.org/10.1021/cm400699r
  • Miller, J. E., & Brown, N. E. (1997). Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications. Technical report, SAND97-0771. https://doi.org/10.2172/469131
  • Mimura, H., & Akiba, K. (1993). Adsorption behavior of cesium and strontium on synthetic zeolite P. Journal of Nuclear Science and Technology, 30(5), 436-443. https://doi.org/10.1080/18811248.1993.9734500
  • Mishra, S. P., & Singh, V. K. (1995). Radiotracer technique in adsorption study XIII. Adsorption of barium and strontium ions on chromium(IV) oxide powder. Applied Radiation and Isotopes, 46(9), 847-853. https://doi.org/10.1016/0969-8043(95)00149-8
  • Mishra, S. P., & Tiwary, D. (1999). Ion exchangers in radioactive waste management. Part XI. Removal of barium and strontium ions from aqueous solutions by hydrous ferric oxide. Applied Radiation and Isotopes, 51(4), 359-366. https://doi.org/10.1016/s0969-8043(99)00065-2
  • Möller, T. (2002). Selective crystalline inorganic materials as ion exchangers in the treatment of nuclear waste solutions. [Doctoral Thesis, University of Helsinki].
  • Möller, T., Harjula, R., Pillinger, M., Dyer, A., Newton, J., Tusa, E., Amin, S., Webb, M., & Araya, A. (2001). Uptake of 85Sr, 134Cs and 57Co by antimony silicates doped with Ti4+, Nb5+, Mo6+ and W6+. Journal of Materials Chemistry, 11(5), 1526-1532. https://doi.org/10.1039/B009888O
  • Mu, W., Yu, Q., Zhang, R., Li, X., Hu, R., He, Y., Wei, H., Jian, Y., & Yang, Y. (2017). Controlled fabrication of flower-like α-zirconium phosphate for the efficient removal of radioactive strontium from acidic nuclear wastewater. Journal of Materials Chemistry A, 5(46), 24388-24395. https://doi.org/10.1039/C7TA07803J
  • Munthali, M. W., Johan, E., Aono, H., & Matsue, N. (2015). Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. Journal of Asian Ceramics Societies, 3(3), 245-250. https://doi.org/10.1016/j.jascer.2015.04.002
  • Naushad, M. (2009). Inorganic and composite ion exchange materials and their applications. Ion Exchange Letters, 2, 1-14.
  • Neeway, J. J., Asmussen, R. M., Lawter, A. R., Bowden, M. E., Lukens, W. W., Sarma, D., Riley, B. J., Kanatzidis, M. G., & Qafoku, N. P. (2016). Removal of TcO4– from representative nuclear waste streams with layered potassium metal sulfide materials. Chemistry of Materials, 28(11), 3976-3983. https://doi.org/10.1021/acs.chemmater.6b01296
  • Oleksiienko, O., Levchuk, I., Sitarz, M., Meleshevych, S., Strelko, V., & Sillanpää, M. (2015). Removal of strontium (Sr2+) from aqueous solutions with titanosilicates obtained by the sol-gel method. Journal of Colloid and Interface Science, 438, 159-168. https://doi.org/10.1016/j.jcis.2014.09.075
  • Olmez Aytas, S., Akyil, S., & Eral, M. (2004). Adsorption and thermodynamic behavior of uranium on natural zeolite. Journal of Radioanalytical and Nuclear Chemistry, 260, 119-125. https://doi.org/10.1023/B:JRNC.0000027070.25215.92
  • Park, Y., Shin, W. S., Reddy, S., Shin, S-J., & Choi, S-J. (2010). Use of nano crystalline silicotitanate for the removal of Cs, Co, Sr from low-level liquid radioactive waste. Journal of Nanoelectronics and Optoelectronics, 5(2), 238-242. https://doi.org/10.1166/jno.2010.1101
  • Pavel, C. C., & Popa, K. (2014). Investigations on the ion exchange process of Cs+ and Sr2+ cations by ETS materials. Chemical Engineering Journal, 245, 288-294. https://doi.org/10.1016/j.cej.2014.02.036
  • Pavel, C. C., Walter, M., Pöml, P., Bouexiere, D., & Popa, K. (2011). Contrasting immobilization behavior of Cs+ and Sr2+ cations in a titanosilicate matrix. Journal of Materials Chemistry, 21(11), 3831-3837. https://doi.org/10.1039/C0JM03135F
  • Popa, K., & Pavel, C. C. (2012). Radioactive wastewaters purification using titanosilicates materials: State of the art and perspectives. Desalination, 293, 78-86. https://doi.org/10.1016/j.desal.2012.02.027
  • PRIS-Power Reactor Information System. (2021, 10 Ekim). The database on nuclear power reactors. https://pris.iaea.org/PRIS/home.aspx
  • PRIS-Power Reactor Information System. (2021, 10 Ekim). Trend in electricity supplied. https://pris.iaea.org/PRIS/WorldStatistics/WorldTrendinElectricalProduction.aspx
  • Qasem, N.A.A., Mohammed, R.H., Lawal, D.U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4, 36. https://doi.org/10.1038/s41545-021-00127-0
  • Qi, X., Du, K., Feng, M., Gao, Y., Huang, X., & Kanatzidis, M. G. (2017). The layered A2Sn3S7·(A=organic cation) as efficient ion-exchanger for rare earth element recovery. Journal of the American Chemical Society, 139(12), 4314-4317. https://doi.org/10.1021/jacs.7b00565
  • Qi, X., Du, K., Feng, M., Li, J., Du, C., Zhang, B., & Huang, X. (2015). A two-dimensionally microporous thiostannate with superior Cs+ and Sr2+ ion-exchange property. Journal of Materials Chemistry A, 3(10), 5665-5673. https://doi.org/10.1039/C5TA00566C
  • Radiological Aspects. (2021, 10 Ekim). Guidelines for Drinking-Water Quality. Erişim adresi https://www.who.int/water_sanitation_health/dwq/GDW9rev1and2.pdf.
  • Rahman, R. O. A., Ibrahium, H. A., & Hung, Y. T. (2011). Liquid radio-active wastes treatment: A review. Water, 3(2), 551-565. https://doi.org/10.3390/w3020551
  • Ryu, J., Kim, S., Hong, H-J., Hong, J., Kim, M., Ryu, T., Park, I-S., Chung, K-S., Jang, J. S., & Kim, B-G. (2016). Strontium ion (Sr2+) separation from seawater by hydrothermally structured titanate nanotubes: Removal vs. recovery. Chemical Engineering Journal, 304, 503-510. https://doi.org/10.1016/j.cej.2016.06.131
  • Sarma, D., Malliakas, C. D., Subrahmanyam, K. S., Islama, S. M., & Kanatzidis, M. G. (2016). K2xSn4-xS8-x (x=0.65-1): A new metal sulfide for rapid and selective removal of Cs+, Sr2+ and UO22+ ions. Chemical Science, 7(2), 1121-1132. https://doi.org/10.1039/C5SC03040D
  • Savva, S. N. (2015). New materials for strontium removal from nuclear waste streams. [Doctoral Thesis, University of Birmingham].
  • Sengupta, P., Dudwadkar, N. L., Vishwanadh, B., Pulhani, V., Rao, R., Tripathi, S. C., & Dey, G. K. (2014). Uptake of hazardous radionuclides with layered chalcogenide for environmental protection. Journal of Hazardous Materials, 266, 94-101. https://doi.org/10.1016/j.jhazmat.2013.12.010
  • Shabana, E. I., & El-Dessouky, M. I. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Jorunal of Radioanalytical and Nuclear Chemistry, 253(2), 281-284. https://doi.org/10.1023/A:1019610128059
  • Smiciklas, I., Coha, I., Jovic, M., Nodilo, M., Sljivic-Ivanovic, M., Smiljanic, S., & Grahek, Z. (2021). Efficient separation of strontium radionuclides from high-salinity wastewater by zeolite 4A synthesized from Bayer process liquids. Scientific Reports, 11, 1738. https://doi.org/10.1038/s41598-021-81255-y
  • Solbra, S., Allison, N., Waite, S., Mikhalovsky, S. V., Bortun, A. I., Bortun, L. N., & Clearfield, A. (2001). Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4⸱ nH2O (M = H, Na). Environmental Science & Technology, 35(3), 626-629. https://doi.org/10.1021/es000136x
  • Sonar, N. L., Pardeshi, V., De, V., Shukla, R., Valsala, T. P., Kulkarni, Y., Manoj, N., Pillai, C. S., Tyagi, A. K., Raj, K., & Manchanda, V. K. (2011). Evaluation of metal antimonate compounds for the removal of radiostrontium from radioactive liquid waste: Characterization and sorption behavior. Separation Science and Technology, 46(11), 1776-1787. https://doi.org/10.1080/01496395.2011.571226
  • Sylvester, P. (2000). Strontium from nuclear wastes: Ion exchange. Academic Press.
  • Tang, M., Chen, J., Wang, P., Wang, C., & Ao, Y. (2018). Highly efficient adsorption of uranium(VI) from aqueous solution by a novel adsorbent: Titanium phosphate nanotubes. Environmental Science: Nano, 5, 2304-2314. https://doi.org/10.1039/C8EN00761F
  • Taylor-Pashow, K. M. L., Missimer, D. M., Jurgensen, A., & Hobbs, D. T. (2011). Characterization of modified monosodium titanate - an improved sorbent for strontium and actinide separations. Separation Science and Technology, 46(7), 1087-1097. https://doi.org/10.1080/01496395.2011.554951
  • Taylor, R. (2015). Reprocessing and recycling of spent nuclear fuel. Elsevier.
  • Trivedi, P., & Axe, L. (1999). A comparison of strontium sorption to hydrous aluminum, iron, and manganese oxides. Journal of Colloid and Interface Science, 218(2), 554-563. https://doi.org/10.1006/jcis.1999.6465
  • U.S. EPA-United States Environmental Protection Agency. (2021, 10 Ekim). Radionuclide basics: Strontium-90. https://www.epa.gov/radiation/radionuclide-basics-strontium-90
  • U.S. EPA, EMSL. (1980). Method 905.0: Radioactive strontium in drinking water, prescribed procedures for measurement of radioactivity in drinking water, EPA/600/4/80/032. https://www.epa.gov/sites/default/files/2015-06/documents/epa-905.0.pdf Venkatesan, K. A., Panner Selvam, G., & Vasudeva Rao, P. R. (2000). Sorption of strontium on hydrous zirconium oxide. Separation Science and Technology, 35(14), 2343-2357. https://doi.org/10.1081/SS-100102106
  • Vijayan, S., Belikov, K., & Drapailo, A. (2011). Inorganic sorbents for radiostrontium removal from waste solutions: Selectivity and role of calixarenes. Technical Report, AECL-CW-121600-CONF-001.
  • Xu, C., Wang, J., & Chen, J. (2012). Solvent extraction of strontium and cesium: A review of recent progress. Solvent Extraction and Ion Exchange, 30(6), 623-650. https://doi.org/10.1080/07366299.2012.700579
  • Yang, A., Yang, P., & Huang, C. P. (2017). Effect of Mg(II) on the removal of uranium from low radioactive wastewater by flocculation using polyacrylamide. Journal of Hazardous, Toxic, and Radioactive Waste, 21(4), 4017006. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000359
  • Yang, H., Luo, M., Luo, L., Wang, H., Hu, D., Lin, J., Wang, X., Wang, Y., Wang, S., & Bu, X. (2016). Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy. Chemistry of Materials, 28, 8774-8780. https://doi.org/10.1021/acs.chemmater.6b04273
  • Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., & Zhang, M. (2015a). Strontium(II) adsorption on use of silicotitanates for removing cesium and strontium from defense waste Sb(III)/Sb2O5. Chemical Engineering Journal, 267, 245-252. Zhang, L., Wei, J., Zhao, X., Li, F., & Jiang, F. (2015b). Adsorption characteristics of strontium on synthesized antimony silicate. Chemical Engineering Journal, 277, 378-387. https://doi.org/10.1016/j.cej.2015.04.145
  • Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., Zhang, M., & Cheng, X. (2016a). Competitive adsorption of strontium and cobalt onto tin antimonate. Chemical Engineering Journal, 285, 679-689. https://doi.org/10.1016/j.cej.2015.10.013
  • Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., Zhang, M., & Cheng, X. (2016b). Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate. Chemical Engineering Journal, 302, 733-743. https://doi.org/10.1016/j.cej.2016.05.040
  • Zhang, M., Gu, P., Zhang, Z., Liu, J., Dong, L., & Zhang, G. (2018). Effective, rapid and selective adsorption of radioactive Sr2+ from aqueous solution by a novel metal sulfide adsorbent. Chemical Engineering Journal, 351, 668-677. https://doi.org/10.1016/j.cej.2018.06.069
  • Zhang, M., Gu, P., Yan, S., Dong, L., & Zhang, G. (2020). Na/Zn/Sn/S (NaZTS): Quaternary metal sulfide nanosheets for efficient adsorption of radioactive strontium ions. Chemical Engineering Journal, 379, 122227. https://doi.org/10.1016/j.cej.2019.122227
  • Zhuravlev, I. (2020). Titanium silicates precipitated on the rice husk biochar as adsorbents for the extraction of cesium and strontium radioisotope ions. Colloids and Interfaces, 3(1), 36. https://doi.org/10.3390/colloids3010036

Stronsiyum gideriminde sentetik inorganik iyon değiştiricilerin kullanımı

Year 2022, , 964 - 981, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1011693

Abstract

Stronsiyum-90, nükleer reaktörlerin işletilmesi sırasında oluşan stronsiyumun en tehlikeli radyoaktif izotopudur. Nükleer kazalardan ve nükleer silah testlerinden kaynaklanan serpinti nedeniyle de çevreye yayılabilir. Tehlikeli radyonüklidlerin uzaklaştırılması ve radyoaktif atıkların güvenli yönetimi hayati bir zorunluluktur. İyon değişimi, sıvı radyoaktif atıkların yönetiminde en çok kullanılan yöntemlerden biri olmuştur. İnorganik iyon değiştiriciler termal, kimyasal ve radyasyon direnci ile öne çıkar. Belirli katyonlar için seçicilik gösterirler. Bu derleme, 90Sr'nin zeolitler, titanatlar, titanosilikatlar, diğer asit tuzları, hidrate oksitler ve metal sülfürler gibi sentetik inorganik iyon değiştiriciler ile uzaklaştırılmasına odaklanmıştır. Genel olarak, 100'den fazla yayın gözden geçirilmiş ve inorganik iyon değiştiriciler kullanılarak stronsiyum giderimi hakkında ayrıntılı veriler sunulmuştur.

References

  • Abdel-Rahman, R. O., Ibrahim, H. A., Hanafy, M., & Abdel-Monem, N. M. (2010). Assessment of synthetic zeolite NaA-X as sorbing barrier for strontium in a radioactive disposal facility. Chemical Engineering Journal, 157(1), 100-112. https://doi.org/10.1016/j.cej.2009.10.057
  • Ahmadi, S. J., Akbari, N., Shiri-Yekta, Z., Mashhadizadeh, M. H., & Pourmatin, A. (2014). Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2–ZrO2 composite: A new inorganic ion exchanger. Journal of Radioanalytical and Nuclear Chemistry, 299, 1701-1707. https://doi.org/10.1007/s10967-013-2852-9
  • Ahmadi, S. J., Akbari, N., Shiri-Yekta, Z., Mashhadizadeh, M. H., & Hosseinpour, M. (2015). Removal of strontium ions from nuclear waste using synthesized MnO2-ZrO2 nano-composite by hydrothermal method in supercritical condition. Korean Journal of Chemical Engineering, 32(3), 478-485. https://doi.org/10.1007/s10967-013-2852-9
  • Ambashta, R. D., & Sillanpää, M. E. T. (2012). Membrane purification in radioactive waste management: A short review. Journal of Environmental Radioactivity, 105, 76-84. https://doi.org/10.1016/j.jenvrad.2011.12.002
  • Amesh, P., Suneesh, A. S., Venkatesan, K. A., Maheswari, R. U., & Vijayalakshmi, S. (2020). Preparation and ion exchange studies of cesium and strontium on sodium iron titanate. Separation and Purification Technology, 238, 116393. https://doi.org/10.1016/j.seppur.2019.116393
  • Anthony, R. G., Dosch, R. G., Gu, D., & Philip, C. V. (1994). Use of silicotitanates for removing cesium and strontium from defense waste. Industrial & Engineering Chemical Research, 33(11), 2702-2705. https://doi.org/10.1021/ie00035a020
  • Awual, M. R., Suzuki, S., Taguchi, T., Shiwaku, H., Okamoto, Y., & Yaita, T. (2014). Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chemical Engineering Journal, 242, 127-135. https://doi.org/10.1016/j.cej.2013.12.072
  • Baisden, P. A., & Atkins-Duffi, C. E. (2011). Radioactive waste management. In A. Vertes, S. Nagy, Z. Klencsar, R. G. Lovas, & F. Rosch (Eds.), Handbook of Nuclear Chemistry. Springer.
  • Barkat, M., Nibou, D., Amokrane, S., Chegrouche, S., & Mellah, A. (2015). Uranium (VI) adsorption on synthesized 4A and P1 zeolites: Equilibrium, kinetic, and thermodynamic studies. Comptes Rendus Chimie, 18(3), 261-269. https://doi.org/10.1016/j.crci.2014.09.011
  • Behrens, E. A., Sylvester, P., & Clearfield, A. (1998). Assessment of a sodium nonatitanate and pharmacosiderite.-type ion exchangers for strontium and cesium removal from DOE waste simulants. Journal of Environmental Science and Technology, 32(1), 101-107. https://doi.org/10.1021/ES9704794
  • Camacho, L. M., Deng, S., & Parra, R. R. (2010). Uranium removal from groundwater by natural clinoptilolite zeolite: Effects of pH and initial feed concentration. Journal of Hazardous Materials, 175(1-3), 393-398. https://doi.org/10.1016/j.jhazmat.2009.10.017
  • Chitra, S., Shanmugamani, A. G., Sudh, R., Kalavathi, S., & Paul, B. (2017). Selective removal of cesium and strontium by crystalline silicotitanates. Journal of Radioanalytical and Nuclear Chemistry, 312, 507-515. https://doi.org/10.1007/s10967-017-5249-3
  • Clearfield, A. (2000). Inorganic ion exchangers, past, present, and future. Solvent Extraction and Ion Exchange, 18(4), 655-678. https://doi.org/10.1080/07366290008934702
  • Clearfield, A., Medvedev, D. G., Kerlegon, S., Bosser, T., Burns, J. D., & Jackson, M. (2012). Rates of exchange of Cs+ and Sr2+ for poorly crystalline sodium titanium silicate (CST) in nuclear waste systems. Solvent Extraction and Ion Exchange, 30(3), 229-243. https://doi.org/10.1080/07366299.2011.639256
  • Çiçek, E., Cojocaru, C., Zakrzewska-Trznadel, G., Harasimowicz, M., & Miskiewicz, A. (2012). Response surface methodology for the modelling of 85Sr adsorption on zeolite 3A and pumice. Environmental Technology, 33(1), 51-59. https://doi.org/10.1080/09593330.2010.549514
  • Dyer, A., Pillinger, M., Newton, J., Harjula, R., Möller, T., & Amin, S. (2000). Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chemistry of Materials, 12(12), 3798-3804. https://doi.org/10.1021/cm001142v
  • El-Latif, M. M. A., & Elkady, M. F. (2011). Synthesis, characterization and evaluation of nano-zirconium vanadate ion exchanger by using three different preparation techniques. Materials Research Bulletin, 46(1), 105-118. https://doi.org/10.1016/j.materresbull.2010.09.032
  • Fang, X-H., Fang, F., Lu, C-H., & Zheng, L. (2017). Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites. Nuclear Engineering and Technology, 49(3), 556-561. https://doi.org/10.1016/j.net.2016.11.008
  • Figueiredo, B. R., Cardoso, S. P., Portugal, I., Rocha, J., & Silva, C. M. (2018). Inorganic ion exchangers for cesium removal from radioactive wastewater. Separation and Purification Reviews, 47(4), 306-336. https://doi.org/10.1080/15422119.2017.1392974
  • Guevar, C., Hertz, A., Brackx, E., Barre, Y., & Grandjean, A. (2017). Mechanisms of strontium removal by a Ba-titanate material for the wastewater treatment. Journal of Environmental Chemical Engineering, 5(5), 4948-4957. https://doi.org/10.1016/j.jece.2017.09.024
  • Gürboğa, G., & Tel, H. (2005). Preparation of TiO2-SiO2 mixed gel spheres for strontium adsorption. Journal of Hazardous Materials, 120(1-3), 135-142. https://doi.org/10.1016/j.jhazmat.2004.12.037
  • Hamed, M. M., Holiel, M., & Ahmed, I. M. (2016). Sorption behavior of cesium, cobalt and europium radionuclides onto hydroxyl magnesium silicate. Radiochimica Acta, 104(12), 873-890. https://doi.org/10.1515/ract-2016-2579
  • ISO-International Organization for Standartization. (2021, 10 Ekim). ISO/DIS 13160(en) Water quality-strontium 90 and strontium 89-test methods using liquid scintillation counting or proportional counting. https://www.iso.org/standard/78205.html
  • Ivanets, A., Radkevich,·A., Shashkova, I., Kitikova, N., Zarubo, A., & Venhlinskaya, E. (2021). Study of dynamic adsorption and desorption kinetics of cesium, strontium, cobalt radionuclides on granular phosphate adsorbent. Journal of Radioanalytical Nuclear Chemistry, 327, 1291-1298. https://doi.org/10.1007/s10967-020-07584-w
  • İnan, S., & Altaş, Y. (2010). Adsorption of strontium from acidic waste solution by Mn–Zr mixed hydrous oxide prepared by co-precipitation. Separation Science and Technology, 45(2), 269-276. https://doi.org/10.1080/01496390903409666
  • İnan, S., Tel, H., & Altaş, Y. (2006). Sorption studies of strontium on hydrous zirconium dioxide. Journal of Radioanalytical and Nuclear Chemistry, 267(3), 615-621. https://doi.org/10.1007/s10967-006-0094-9
  • Jia, F., Li, J., Wang, J., & Sun, Y. (2017). Removal of strontium ions from simulated radioactive wastewater by vacuum membrane distillation. Annals of Nuclear Energy, 103, 363-368. https://doi.org/10.1016/j.anucene.2017.02.003
  • Jimenez-Reyes, M., Almazan-Sanchez, P. T., & Solache-Rios, M. (2021). Radioactive waste treatments by using zeolites. A short review. Journal of Environmental Radioactivity, 233, 106610. https://doi.org/10.1016/j.jenvrad.2021.106610
  • Jozdani, S. M. B., Nilchi, A., & Abdolmohammadi, S. (2019). Disposal of cesium ion from wastewater using biocompatible titanate nanotube. Desalination and Water Treatment, 138, 219-229. https://doi.org/10.5004/dwt.2019.23335
  • Korneikov, R. I., & Ivanenko, V. I. (2020). Extraction of cesium and strontium cations from solutions by titanium(IV) phosphate-based ion exchangers. Inorganic Materials, 56(5), 528-532. https://doi.org/10.1134/S0020168520050088
  • Krishna, M. V. B., Rao, S., Arunachalam, J., Murali, M., Kumar, S., & Manchanda, V. (2004). Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent. Separation and Purification Technology, 38(2), 149-161. https://doi.org/10.1016/j.seppur.2003.11.002
  • Krol, M. (2020). Natural vs. synthetic zeolites. Crystals, 10(7), 622. https://doi.org/10.3390/cryst10070622
  • Kumar, J. R., Kim, J-S., Lee, J-Y., & Yoon, H-S. (2011). A brief review on solvent extraction of uranium from acidic solutions. Separation and Purification Reviews, 40(2), 77-125. https://doi.org/10.1080/15422119.2010.549760
  • Lehto, J., & Clearfield, A. (1987). The ion exchange of strontium on sodium titanate Na4Ti9O20-xH2O. Journal of Radioanalytical and Nuclear Chemistry Letters, 118(1), 1-13. https://doi.org/10.1007/BF02165649
  • Lehto, J., Bordkin, L., Harjula, R., & Tusa, E. (1999). Separation of radioactive strontium from alkaline nuclear waste solutions with the highly effective ion exchanger SrTreat. Nuclear Technology, 127(1), 81-87. https://doi.org/10.13182/NT99-A2985
  • Levenets, V. V., Lonin, A. Y., Omelnik, O. P., & Shchur, A. O. (2016). Comparison the sorption properties of clinoptilolite and synthetic zeolite during sorption strontium from the water solutions in static conditions: Sorption and quantitative determination of strontium by the method PIXE. Journal of Environmental Chemical Engineering, 4(4), 3961-3966. https://doi.org/10.1016/j.jece.2016.09.011
  • Li, H., Huang, Y., Liu, J., & Duan, H. (2021). Hydrothermally synthesized titanate nanomaterials for the removal of heavy metals and radionuclides from water: A review. Chemosphere, 282, 131046. https://doi.org/10.1016/j.chemosphere.2021.131046
  • Li, J., Wang, X., Yuan, B., & Fu, M. (2014a). Layered chalcogenide for Cu2+ removal by ion exchange from wastewater. Journal of Molecular Liquids, 200, 205-212. https://doi.org/10.1016/j.molliq.2014.09.008
  • Li, J., Wang, X., Yuan, B., Fu, M., & Cui, H. (2014b). Robust removal of heavy metals from water by intercalation chalcogenide [CH3NH3]2xMnxSn3-xS6∙0.5H2O. Applied Surface Science, 320, 112-119. https://doi.org/10.1016/j.apsusc.2014.09.057
  • Li, X., Mu, W., Xie, X., Liu, B., Tang, H., Zhou, G., Wei, H., Jian, Y., & Lou, S. (2014). Strontium adsorption on tantalum-doped hexagonal tungsten oxide. Journal of Hazardous Materials, 264, 386-394. https://doi.org/10.1016/j.jhazmat.2013.11.032
  • Liang, C., Jia, M., Wang, X., Du, Z., Men, J., & Ding, H. (2019). Preparation of potassium niobium sulfide and its selective adsorption properties for Sr2+ and Co2+. Journal of Radioanalytical and Nuclear Chemistry, 322, 377-387. https://doi.org/10.1007/s10967-019-06685-5
  • Logunov, M. V., Skobtsov, A. S., Soldatov, B. V., Pazdnikov, A. P., Voroshilov, Y. A., & Rovny, S. I. (2004). Research and application of inorganic selective sorbents at Mayak PA. Comptes Rendus Chimie, 7(12), 1185-1190. http://dx.doi.org/10.1016/j.crci.2004.05.006
  • Lopes, C. B., Lito, P. F., Otero, M., Lin, Z., Rocha, J., Silva, C. M., Pereira, E., & Duarte, A. C. (2008). Mercury removal with titanosilicate ETS-4: Batch experiments and modelling. Microporous and Mesoporous Materials, 115(1-2), 98-105. https://doi.org/10.1016/j.micromeso.2007.10.055
  • Luo, X., & Wang, J. (2014). Study on radioactive wastewater treatment by precipitation and membrane separation. Applied Mechanics and Materials, 490-491, 972-975. https://doi.org/10.4028/www.scientific.net/AMM.490-491.972
  • Luo, X., Zhang, G., Wang, X. , & Gu, P. (2013). Research on a pellet coprecipitation micro-filtration process for the treatment of liquid waste containing strontium. Journal of Radioanalytical and Nuclear Chemistry, 298(2), 931-939. https://doi.org/10.1007/s10967-013-2495-x
  • Manos, M. J., & Kanatzidis, M. G. (2016). Metal sulfide ion exchangers: superior sorbents for the capture of toxic and nuclear waste-related metal ions. Chemical Science, 7(8), 4804-4824. https://doi.org/10.1039/C6SC01039C
  • Manos, M. J., Iyer, R. G., Quarez, E., Liao, J. H., & Kanatzidis, M. G. (2005). {Sn[Zn4Sn4S17]}6–: A robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10– clusters with ion-exchange properties. Angewandte Chemie International Edition, 44(23), 3552-3555. https://doi.org/10.1002/anie.200500214
  • Manos, M. J., Chrissafis, K., & Kanatzidis, M. G. (2006). Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn [Zn4Sn4S17]. Journal of American Chemical Society, 128(27), 8875-8883. https://doi.org/10.1021/ja061342t
  • Manos, M. J., & Kanatzidis, M. G. (2009). Sequestration of heavy metals from water with layered metal sulfides. Chemistry-A European Journal, 15(19), 4779-4784. https://doi.org/10.1002/chem.200900353
  • Manos, M. J., & Kanatzidis, M. G. (2012). Layered metal sulfides capture uranium from seawater. Journal of American Chemical Society, 134(39), 16441-16446. https://doi.org/10.1021/ja308028n
  • Manos, M. J., Ding, N., & Kanatzidis, M. G. (2008). Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3696-3699. https://doi.org/10.1073/pnas.0711528105
  • Marinin, D. V., & Brown, G. N. (2000). Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management, 20(7), 545-553. https://doi.org/10.1016/S0956-053X(00)00017-9
  • Mertz, J. L., Fard, Z. H., Malliakas, C. D., Manos, M. J., & Kanatzidis, M. G. (2013). Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x=0.5-1) (KMS-2) relevant to nuclear waste remediation. Chemistry of Materials, 25(10), 2116-2127. https://doi.org/10.1021/cm400699r
  • Miller, J. E., & Brown, N. E. (1997). Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications. Technical report, SAND97-0771. https://doi.org/10.2172/469131
  • Mimura, H., & Akiba, K. (1993). Adsorption behavior of cesium and strontium on synthetic zeolite P. Journal of Nuclear Science and Technology, 30(5), 436-443. https://doi.org/10.1080/18811248.1993.9734500
  • Mishra, S. P., & Singh, V. K. (1995). Radiotracer technique in adsorption study XIII. Adsorption of barium and strontium ions on chromium(IV) oxide powder. Applied Radiation and Isotopes, 46(9), 847-853. https://doi.org/10.1016/0969-8043(95)00149-8
  • Mishra, S. P., & Tiwary, D. (1999). Ion exchangers in radioactive waste management. Part XI. Removal of barium and strontium ions from aqueous solutions by hydrous ferric oxide. Applied Radiation and Isotopes, 51(4), 359-366. https://doi.org/10.1016/s0969-8043(99)00065-2
  • Möller, T. (2002). Selective crystalline inorganic materials as ion exchangers in the treatment of nuclear waste solutions. [Doctoral Thesis, University of Helsinki].
  • Möller, T., Harjula, R., Pillinger, M., Dyer, A., Newton, J., Tusa, E., Amin, S., Webb, M., & Araya, A. (2001). Uptake of 85Sr, 134Cs and 57Co by antimony silicates doped with Ti4+, Nb5+, Mo6+ and W6+. Journal of Materials Chemistry, 11(5), 1526-1532. https://doi.org/10.1039/B009888O
  • Mu, W., Yu, Q., Zhang, R., Li, X., Hu, R., He, Y., Wei, H., Jian, Y., & Yang, Y. (2017). Controlled fabrication of flower-like α-zirconium phosphate for the efficient removal of radioactive strontium from acidic nuclear wastewater. Journal of Materials Chemistry A, 5(46), 24388-24395. https://doi.org/10.1039/C7TA07803J
  • Munthali, M. W., Johan, E., Aono, H., & Matsue, N. (2015). Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. Journal of Asian Ceramics Societies, 3(3), 245-250. https://doi.org/10.1016/j.jascer.2015.04.002
  • Naushad, M. (2009). Inorganic and composite ion exchange materials and their applications. Ion Exchange Letters, 2, 1-14.
  • Neeway, J. J., Asmussen, R. M., Lawter, A. R., Bowden, M. E., Lukens, W. W., Sarma, D., Riley, B. J., Kanatzidis, M. G., & Qafoku, N. P. (2016). Removal of TcO4– from representative nuclear waste streams with layered potassium metal sulfide materials. Chemistry of Materials, 28(11), 3976-3983. https://doi.org/10.1021/acs.chemmater.6b01296
  • Oleksiienko, O., Levchuk, I., Sitarz, M., Meleshevych, S., Strelko, V., & Sillanpää, M. (2015). Removal of strontium (Sr2+) from aqueous solutions with titanosilicates obtained by the sol-gel method. Journal of Colloid and Interface Science, 438, 159-168. https://doi.org/10.1016/j.jcis.2014.09.075
  • Olmez Aytas, S., Akyil, S., & Eral, M. (2004). Adsorption and thermodynamic behavior of uranium on natural zeolite. Journal of Radioanalytical and Nuclear Chemistry, 260, 119-125. https://doi.org/10.1023/B:JRNC.0000027070.25215.92
  • Park, Y., Shin, W. S., Reddy, S., Shin, S-J., & Choi, S-J. (2010). Use of nano crystalline silicotitanate for the removal of Cs, Co, Sr from low-level liquid radioactive waste. Journal of Nanoelectronics and Optoelectronics, 5(2), 238-242. https://doi.org/10.1166/jno.2010.1101
  • Pavel, C. C., & Popa, K. (2014). Investigations on the ion exchange process of Cs+ and Sr2+ cations by ETS materials. Chemical Engineering Journal, 245, 288-294. https://doi.org/10.1016/j.cej.2014.02.036
  • Pavel, C. C., Walter, M., Pöml, P., Bouexiere, D., & Popa, K. (2011). Contrasting immobilization behavior of Cs+ and Sr2+ cations in a titanosilicate matrix. Journal of Materials Chemistry, 21(11), 3831-3837. https://doi.org/10.1039/C0JM03135F
  • Popa, K., & Pavel, C. C. (2012). Radioactive wastewaters purification using titanosilicates materials: State of the art and perspectives. Desalination, 293, 78-86. https://doi.org/10.1016/j.desal.2012.02.027
  • PRIS-Power Reactor Information System. (2021, 10 Ekim). The database on nuclear power reactors. https://pris.iaea.org/PRIS/home.aspx
  • PRIS-Power Reactor Information System. (2021, 10 Ekim). Trend in electricity supplied. https://pris.iaea.org/PRIS/WorldStatistics/WorldTrendinElectricalProduction.aspx
  • Qasem, N.A.A., Mohammed, R.H., Lawal, D.U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4, 36. https://doi.org/10.1038/s41545-021-00127-0
  • Qi, X., Du, K., Feng, M., Gao, Y., Huang, X., & Kanatzidis, M. G. (2017). The layered A2Sn3S7·(A=organic cation) as efficient ion-exchanger for rare earth element recovery. Journal of the American Chemical Society, 139(12), 4314-4317. https://doi.org/10.1021/jacs.7b00565
  • Qi, X., Du, K., Feng, M., Li, J., Du, C., Zhang, B., & Huang, X. (2015). A two-dimensionally microporous thiostannate with superior Cs+ and Sr2+ ion-exchange property. Journal of Materials Chemistry A, 3(10), 5665-5673. https://doi.org/10.1039/C5TA00566C
  • Radiological Aspects. (2021, 10 Ekim). Guidelines for Drinking-Water Quality. Erişim adresi https://www.who.int/water_sanitation_health/dwq/GDW9rev1and2.pdf.
  • Rahman, R. O. A., Ibrahium, H. A., & Hung, Y. T. (2011). Liquid radio-active wastes treatment: A review. Water, 3(2), 551-565. https://doi.org/10.3390/w3020551
  • Ryu, J., Kim, S., Hong, H-J., Hong, J., Kim, M., Ryu, T., Park, I-S., Chung, K-S., Jang, J. S., & Kim, B-G. (2016). Strontium ion (Sr2+) separation from seawater by hydrothermally structured titanate nanotubes: Removal vs. recovery. Chemical Engineering Journal, 304, 503-510. https://doi.org/10.1016/j.cej.2016.06.131
  • Sarma, D., Malliakas, C. D., Subrahmanyam, K. S., Islama, S. M., & Kanatzidis, M. G. (2016). K2xSn4-xS8-x (x=0.65-1): A new metal sulfide for rapid and selective removal of Cs+, Sr2+ and UO22+ ions. Chemical Science, 7(2), 1121-1132. https://doi.org/10.1039/C5SC03040D
  • Savva, S. N. (2015). New materials for strontium removal from nuclear waste streams. [Doctoral Thesis, University of Birmingham].
  • Sengupta, P., Dudwadkar, N. L., Vishwanadh, B., Pulhani, V., Rao, R., Tripathi, S. C., & Dey, G. K. (2014). Uptake of hazardous radionuclides with layered chalcogenide for environmental protection. Journal of Hazardous Materials, 266, 94-101. https://doi.org/10.1016/j.jhazmat.2013.12.010
  • Shabana, E. I., & El-Dessouky, M. I. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Jorunal of Radioanalytical and Nuclear Chemistry, 253(2), 281-284. https://doi.org/10.1023/A:1019610128059
  • Smiciklas, I., Coha, I., Jovic, M., Nodilo, M., Sljivic-Ivanovic, M., Smiljanic, S., & Grahek, Z. (2021). Efficient separation of strontium radionuclides from high-salinity wastewater by zeolite 4A synthesized from Bayer process liquids. Scientific Reports, 11, 1738. https://doi.org/10.1038/s41598-021-81255-y
  • Solbra, S., Allison, N., Waite, S., Mikhalovsky, S. V., Bortun, A. I., Bortun, L. N., & Clearfield, A. (2001). Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4⸱ nH2O (M = H, Na). Environmental Science & Technology, 35(3), 626-629. https://doi.org/10.1021/es000136x
  • Sonar, N. L., Pardeshi, V., De, V., Shukla, R., Valsala, T. P., Kulkarni, Y., Manoj, N., Pillai, C. S., Tyagi, A. K., Raj, K., & Manchanda, V. K. (2011). Evaluation of metal antimonate compounds for the removal of radiostrontium from radioactive liquid waste: Characterization and sorption behavior. Separation Science and Technology, 46(11), 1776-1787. https://doi.org/10.1080/01496395.2011.571226
  • Sylvester, P. (2000). Strontium from nuclear wastes: Ion exchange. Academic Press.
  • Tang, M., Chen, J., Wang, P., Wang, C., & Ao, Y. (2018). Highly efficient adsorption of uranium(VI) from aqueous solution by a novel adsorbent: Titanium phosphate nanotubes. Environmental Science: Nano, 5, 2304-2314. https://doi.org/10.1039/C8EN00761F
  • Taylor-Pashow, K. M. L., Missimer, D. M., Jurgensen, A., & Hobbs, D. T. (2011). Characterization of modified monosodium titanate - an improved sorbent for strontium and actinide separations. Separation Science and Technology, 46(7), 1087-1097. https://doi.org/10.1080/01496395.2011.554951
  • Taylor, R. (2015). Reprocessing and recycling of spent nuclear fuel. Elsevier.
  • Trivedi, P., & Axe, L. (1999). A comparison of strontium sorption to hydrous aluminum, iron, and manganese oxides. Journal of Colloid and Interface Science, 218(2), 554-563. https://doi.org/10.1006/jcis.1999.6465
  • U.S. EPA-United States Environmental Protection Agency. (2021, 10 Ekim). Radionuclide basics: Strontium-90. https://www.epa.gov/radiation/radionuclide-basics-strontium-90
  • U.S. EPA, EMSL. (1980). Method 905.0: Radioactive strontium in drinking water, prescribed procedures for measurement of radioactivity in drinking water, EPA/600/4/80/032. https://www.epa.gov/sites/default/files/2015-06/documents/epa-905.0.pdf Venkatesan, K. A., Panner Selvam, G., & Vasudeva Rao, P. R. (2000). Sorption of strontium on hydrous zirconium oxide. Separation Science and Technology, 35(14), 2343-2357. https://doi.org/10.1081/SS-100102106
  • Vijayan, S., Belikov, K., & Drapailo, A. (2011). Inorganic sorbents for radiostrontium removal from waste solutions: Selectivity and role of calixarenes. Technical Report, AECL-CW-121600-CONF-001.
  • Xu, C., Wang, J., & Chen, J. (2012). Solvent extraction of strontium and cesium: A review of recent progress. Solvent Extraction and Ion Exchange, 30(6), 623-650. https://doi.org/10.1080/07366299.2012.700579
  • Yang, A., Yang, P., & Huang, C. P. (2017). Effect of Mg(II) on the removal of uranium from low radioactive wastewater by flocculation using polyacrylamide. Journal of Hazardous, Toxic, and Radioactive Waste, 21(4), 4017006. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000359
  • Yang, H., Luo, M., Luo, L., Wang, H., Hu, D., Lin, J., Wang, X., Wang, Y., Wang, S., & Bu, X. (2016). Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy. Chemistry of Materials, 28, 8774-8780. https://doi.org/10.1021/acs.chemmater.6b04273
  • Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., & Zhang, M. (2015a). Strontium(II) adsorption on use of silicotitanates for removing cesium and strontium from defense waste Sb(III)/Sb2O5. Chemical Engineering Journal, 267, 245-252. Zhang, L., Wei, J., Zhao, X., Li, F., & Jiang, F. (2015b). Adsorption characteristics of strontium on synthesized antimony silicate. Chemical Engineering Journal, 277, 378-387. https://doi.org/10.1016/j.cej.2015.04.145
  • Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., Zhang, M., & Cheng, X. (2016a). Competitive adsorption of strontium and cobalt onto tin antimonate. Chemical Engineering Journal, 285, 679-689. https://doi.org/10.1016/j.cej.2015.10.013
  • Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., Zhang, M., & Cheng, X. (2016b). Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate. Chemical Engineering Journal, 302, 733-743. https://doi.org/10.1016/j.cej.2016.05.040
  • Zhang, M., Gu, P., Zhang, Z., Liu, J., Dong, L., & Zhang, G. (2018). Effective, rapid and selective adsorption of radioactive Sr2+ from aqueous solution by a novel metal sulfide adsorbent. Chemical Engineering Journal, 351, 668-677. https://doi.org/10.1016/j.cej.2018.06.069
  • Zhang, M., Gu, P., Yan, S., Dong, L., & Zhang, G. (2020). Na/Zn/Sn/S (NaZTS): Quaternary metal sulfide nanosheets for efficient adsorption of radioactive strontium ions. Chemical Engineering Journal, 379, 122227. https://doi.org/10.1016/j.cej.2019.122227
  • Zhuravlev, I. (2020). Titanium silicates precipitated on the rice husk biochar as adsorbents for the extraction of cesium and strontium radioisotope ions. Colloids and Interfaces, 3(1), 36. https://doi.org/10.3390/colloids3010036
There are 101 citations in total.

Details

Primary Language Turkish
Journal Section Reviews
Authors

Süleyman İnan 0000-0003-4185-0979

Publication Date July 15, 2022
Submission Date October 19, 2021
Acceptance Date April 19, 2022
Published in Issue Year 2022

Cite

APA İnan, S. (2022). Stronsiyum gideriminde sentetik inorganik iyon değiştiricilerin kullanımı. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(3), 964-981. https://doi.org/10.17714/gumusfenbil.1011693