Research Article
BibTex RIS Cite

Comparison of the environmental effects and thermodynamic performances of dry and isentropic fluids in a geothermal heat sourced Organic Rankine Cycle

Year 2022, , 726 - 743, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1032790

Abstract

Organic Rankine Cycle (ORC) is an electricity generation system in which organic fluid is used instead of water in the low temperature range. ORC is used in power plants to use waste heat to generate electricity. In this study, thermophysical, environmental and thermodynamic performance comparisons of the ORC model were made using dry and isentropic fluids. Within the scope of geothermal applications, the heat source temperature was determined as 110 °C. The effect of changing the evaporation temperature between 65-100 °C on system performance was determined. As performance parameters, pump work, turbine work, input heat, irreversibility values, thermal efficiency and exergy efficiency have been determined for ORC. Thermodynamic analysis was performed using Engineering Equation Solver (EES). As a result of this study, it was observed that the highest values in terms of turbine work and thermal efficiency with R601 fluid were 54.72 kJ/kg and 11.34%, respectively, and 32.84 kJ/kg and 11.91% with R141b fluid, respectively. A fluid that performs best from dry and isentropic fluids has been proposed for ORC.

References

  • Ağırkaya, O. (2015). Jeotermal enerji kaynaklı Organik Rankine Çevriminin modellenmesi ve analizi. [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Enerji Bilim ve Teknoloji Programı].
  • Ahmadi, A., El Haj Assad, M., Jamali, D. H., Kumar, R., Li, Z. X., Salameh, T., Al-Shabi, M., & Ehyaei, M. A. (2020). Applications of geothermal Organic Rankine Cycle for electricity production. Journal of Cleaner Production, 274. https://doi.org/10.1016/j.jclepro.2020.122950
  • Akkurt, F. (2020). Düşük sıcaklıkta jeotermal enerji̇ kaynaklı Organik Rankine Çevrimi si̇steminin enerji ve ekserji analizi. Uludağ University Journal of The Faculty of Engineering, 729–742. https://doi.org/10.17482/uumfd.624475
  • Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for Organic Rankine Cycle. Renewable and Sustainable Energy Reviews, 24, 325–342. https://doi.org/10.1016/j.rser.2013.03.040
  • Calm, J. M., & Hourahan, G. C. (2007). Refrigerant data update, HPAC Heating, Piping, AirConditioning Engineering, 79(1), 50–64.
  • Cengel, Y., & Boles, M. (2007). Thermodynamics an engineering approach. McGraw- Hill.
  • Cataldo, F., Mastrullo, R., Mauro, A. W., & Vanoli, G. P. (2014). Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization. Energy, 72, 159–167. https://doi.org/10.1016/j.energy.2014.05.019
  • Günaydın, İ. (2016). 1,5 kW gücünde Organik Rankine Çevriminin parametrik tasarımı termodinamik analizi prototip imalatı ve testi. [Yüksek Lisans Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü].
  • Jankowski, M., Borsukiewicz, A., Szopik-Depczyńska, K., & Ioppolo, G. (2019). Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach, Journal of Cleaner Production, 217, 798-807. https://doi.org/10.1016/j.jclepro.2019.01.250
  • Javanshir, A., & Sarunac, N. (2017). Thermodynamic analysis of a simple Organic Rankine Cycle, Energy, 118, 85–96. https://doi.org/10.1016/j.energy.2016.12.019
  • Javanshir, A., Sarunac, N., & Razzaghpanah, Z. (2017). Thermodynamic analysis of a regenerative organic Rankine cycle using dry fluids, Applied Thermal Engineering, 123, 852-864. https://doi.org/10.1016/j.applthermaleng.2017.05.158
  • Han, Z., Li, P., Han, X., Mei, Z., & Wang, Z. (2017). Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery, Energies, 10, 1593, 1-23. https://doi.org/10.3390/en10101593
  • Kahraman, A., Sahin, R., & Ata, S. (2018a). Analysis of exergy destruction rates in the components of the orc system using n-pentane fluid. International Conference on Engineering Technologies ICENTE’18, 513-518, Konya.
  • Kahraman, A., Sahin, R., & Ata, S. (2018b). Çevresel özellik yönünden farklı özelliklere sahip R134a ve R152a akışkanı kullanılarak tasarlanan Organik Rankine Çevriminin performanslarının karşılaştırılması. VI. KOP Uluslararası Bölgesel Kalkınma Sempozyumu, 554-562, Konya.
  • Kaşka, Ö. (2014). Energy and exergy analysis of an Organic Rankine for power generation from waste heat recovery in steel industry. Energy Conversion and Management, 77, 108–117. https://doi.org/10.1016/j.enconman.2013.09.026
  • Li, J., Liu, Q., Ge, Z., Duan, Y., & Yang, Z. (2017). Thermodynamic performance analyses and optimization of subcritical and transcritical Organic Rankine Cycles using R1234ze(E) for 100–200 °C heat sources. Energy Conversion and Management, 149, 140–154. https://doi.org/10.1016/j.enconman.2017.06.060
  • Özdemir, E. & Kılıç, M. (2017). Energy and exergy analysis of an Organic Rankine Cycle using different working fluids from waste heat recovery. Uluslararası Çevresel Eğilimler Dergisi, 1(1), 32–45. https://dergipark.org.tr/ijent/issue/32841/368720
  • Pelit, M. (2015). Biyokütle kaynaklı Organik Rankine Çevrimli güç ünitesinin termoekonomik analizi. [Yüksek Lisans Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü].
  • Roy, J. P., Mishra, M. K., & Misra, A. (2011). Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions. Applied Energy, 88(9), 2995–3004. https://doi.org/10.1016/j.apenergy.2011.02.042
  • Safarian, S., & Aramoun, F. (2015). Energy and exergy assessments of modified Organic Rankine Cycles (ORCs). Energy Rep. 1, 1–7. https://doi.org/10.1016/j.egyr.2014.10.003
  • Sun, J., Liu, Q., & Duan, Y. (2018). Effects of evaporator pinch point temperature difference on thermoeconomic performance of geothermal organic Rankine cycle systems, Geothermics, 75, 249-258. https://doi.org/10.1016/j.geothermics.2018.06.001
  • Tchanche, B.F. (2010). Low-Grade Heat Conversion into Power Using Small Scale Organic Rankine Cycles, [Doctoral Thesis, Agricultural University Of Athens].
  • Tumen Ozdil, N. F., Segmen, M. R., & Tantekin, A. (2015). Thermodynamic analysis of an Organic Rankine Cycle (ORC) based on industrial data. Applied Thermal Engineering, 91, 43–52. https://doi.org/10.1016/j.applthermaleng.2015.07.079
  • Tumen Ozdil, N. F., Segmen, M. R., & Tantekin, A. (2016). Investigation of different working fluid effects on exergy analysis for Organic Rankine Cycle (ORC). Çukurova University Journal of the Faculty of Engineering and Architecture, 31(June), 441–449.
  • Wang, J., Diao, M., & Yue, K. (2017). Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method. Energy, 141, 97–107. https://doi.org/10.1016/j.energy.2017.09.052
  • Woodland B.J., Ziviani, D., E. Braun, J., & A. Groll, E. (2020). Considerations on alternative Organic Rankine Cycle congurations for low-grade waste heat recovery, Energy. https://doi.org/10.1016/j.energy.2019.116810
  • Wu, Y. T., Lei, B., Ma, C. F., Zhao, L., Wang, J. F., Guo, H., & Lu, Y. W. (2014). Study on the characteristics of expander power output used for offsetting pumping work consumption in Organic Rankine Cycles. Energies, 7(8), 4957–4971. https://doi.org/10.3390/en7084957
  • Yilmaz, C. (2020). Improving performance and thermoeconomic optimization of an existing binary geothermal power plant: A case study. Journal of Thermal Science and Technology, 40(1), 37–51.
  • Yu, H., Feng, X., & Wang, Y. (2015). A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat. Energy, 90, 36–46. https://doi.org/10.1016/j.energy.2015.02.059

Jeotermal ısı kaynaklı Organik Rankine Çevriminde kuru ve izantropik akışkanların çevresel etkilerinin ve termodinamik performanslarının karşılaştırılması

Year 2022, , 726 - 743, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1032790

Abstract

Organik Rankine Çevrimi (ORÇ), düşük sıcaklık aralığında su yerine organik akışkanın kullanıldığı bir elektrik üretim sistemidir. ORÇ, elektrik üretmek için atık ısıyı değerlendirmek amacıyla santrallerde kullanılmaktadır. Bu çalışmada kuru ve izantropik akışkanlar kullanılarak ORÇ modelinin çevresel ve termodinamik performans karşılaştırmaları yapılmıştır. Jeotermal uygulamaları kapsamında ısı kaynağı sıcaklığı 110 °C olarak belirlenmiştir. Buharlaşma sıcaklığının 65-100 °C arasında değişmesinin sistem performansı üzerindeki etkisi belirlenmiştir. Performans parametreleri olarak pompa işi, türbin işi, giren ısı, tersinmezlik değerleri, ısıl verim ve ekserji verimleri ORÇ için tespit edilmiştir. Termodinamik analizi Engineering Equation Solver (EES) kullanılarak yapılmıştır. Bu çalışma sonucunda R601 akışkanıyla türbin işi ve ısıl verim yönünden en yüksek değerlerin sırasıyla 54.72 kJ/kg ve %11.34 olduğu, R141b akışkanıyla ise 32.84 kJ/kg ve %11.91 olduğu görülmüştür. Kuru ve izantropik akışkanlardan en iyi performans gösteren bir akışkan ORÇ için önerilmiştir.

References

  • Ağırkaya, O. (2015). Jeotermal enerji kaynaklı Organik Rankine Çevriminin modellenmesi ve analizi. [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Enerji Bilim ve Teknoloji Programı].
  • Ahmadi, A., El Haj Assad, M., Jamali, D. H., Kumar, R., Li, Z. X., Salameh, T., Al-Shabi, M., & Ehyaei, M. A. (2020). Applications of geothermal Organic Rankine Cycle for electricity production. Journal of Cleaner Production, 274. https://doi.org/10.1016/j.jclepro.2020.122950
  • Akkurt, F. (2020). Düşük sıcaklıkta jeotermal enerji̇ kaynaklı Organik Rankine Çevrimi si̇steminin enerji ve ekserji analizi. Uludağ University Journal of The Faculty of Engineering, 729–742. https://doi.org/10.17482/uumfd.624475
  • Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for Organic Rankine Cycle. Renewable and Sustainable Energy Reviews, 24, 325–342. https://doi.org/10.1016/j.rser.2013.03.040
  • Calm, J. M., & Hourahan, G. C. (2007). Refrigerant data update, HPAC Heating, Piping, AirConditioning Engineering, 79(1), 50–64.
  • Cengel, Y., & Boles, M. (2007). Thermodynamics an engineering approach. McGraw- Hill.
  • Cataldo, F., Mastrullo, R., Mauro, A. W., & Vanoli, G. P. (2014). Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization. Energy, 72, 159–167. https://doi.org/10.1016/j.energy.2014.05.019
  • Günaydın, İ. (2016). 1,5 kW gücünde Organik Rankine Çevriminin parametrik tasarımı termodinamik analizi prototip imalatı ve testi. [Yüksek Lisans Tezi, Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü].
  • Jankowski, M., Borsukiewicz, A., Szopik-Depczyńska, K., & Ioppolo, G. (2019). Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach, Journal of Cleaner Production, 217, 798-807. https://doi.org/10.1016/j.jclepro.2019.01.250
  • Javanshir, A., & Sarunac, N. (2017). Thermodynamic analysis of a simple Organic Rankine Cycle, Energy, 118, 85–96. https://doi.org/10.1016/j.energy.2016.12.019
  • Javanshir, A., Sarunac, N., & Razzaghpanah, Z. (2017). Thermodynamic analysis of a regenerative organic Rankine cycle using dry fluids, Applied Thermal Engineering, 123, 852-864. https://doi.org/10.1016/j.applthermaleng.2017.05.158
  • Han, Z., Li, P., Han, X., Mei, Z., & Wang, Z. (2017). Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery, Energies, 10, 1593, 1-23. https://doi.org/10.3390/en10101593
  • Kahraman, A., Sahin, R., & Ata, S. (2018a). Analysis of exergy destruction rates in the components of the orc system using n-pentane fluid. International Conference on Engineering Technologies ICENTE’18, 513-518, Konya.
  • Kahraman, A., Sahin, R., & Ata, S. (2018b). Çevresel özellik yönünden farklı özelliklere sahip R134a ve R152a akışkanı kullanılarak tasarlanan Organik Rankine Çevriminin performanslarının karşılaştırılması. VI. KOP Uluslararası Bölgesel Kalkınma Sempozyumu, 554-562, Konya.
  • Kaşka, Ö. (2014). Energy and exergy analysis of an Organic Rankine for power generation from waste heat recovery in steel industry. Energy Conversion and Management, 77, 108–117. https://doi.org/10.1016/j.enconman.2013.09.026
  • Li, J., Liu, Q., Ge, Z., Duan, Y., & Yang, Z. (2017). Thermodynamic performance analyses and optimization of subcritical and transcritical Organic Rankine Cycles using R1234ze(E) for 100–200 °C heat sources. Energy Conversion and Management, 149, 140–154. https://doi.org/10.1016/j.enconman.2017.06.060
  • Özdemir, E. & Kılıç, M. (2017). Energy and exergy analysis of an Organic Rankine Cycle using different working fluids from waste heat recovery. Uluslararası Çevresel Eğilimler Dergisi, 1(1), 32–45. https://dergipark.org.tr/ijent/issue/32841/368720
  • Pelit, M. (2015). Biyokütle kaynaklı Organik Rankine Çevrimli güç ünitesinin termoekonomik analizi. [Yüksek Lisans Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü].
  • Roy, J. P., Mishra, M. K., & Misra, A. (2011). Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions. Applied Energy, 88(9), 2995–3004. https://doi.org/10.1016/j.apenergy.2011.02.042
  • Safarian, S., & Aramoun, F. (2015). Energy and exergy assessments of modified Organic Rankine Cycles (ORCs). Energy Rep. 1, 1–7. https://doi.org/10.1016/j.egyr.2014.10.003
  • Sun, J., Liu, Q., & Duan, Y. (2018). Effects of evaporator pinch point temperature difference on thermoeconomic performance of geothermal organic Rankine cycle systems, Geothermics, 75, 249-258. https://doi.org/10.1016/j.geothermics.2018.06.001
  • Tchanche, B.F. (2010). Low-Grade Heat Conversion into Power Using Small Scale Organic Rankine Cycles, [Doctoral Thesis, Agricultural University Of Athens].
  • Tumen Ozdil, N. F., Segmen, M. R., & Tantekin, A. (2015). Thermodynamic analysis of an Organic Rankine Cycle (ORC) based on industrial data. Applied Thermal Engineering, 91, 43–52. https://doi.org/10.1016/j.applthermaleng.2015.07.079
  • Tumen Ozdil, N. F., Segmen, M. R., & Tantekin, A. (2016). Investigation of different working fluid effects on exergy analysis for Organic Rankine Cycle (ORC). Çukurova University Journal of the Faculty of Engineering and Architecture, 31(June), 441–449.
  • Wang, J., Diao, M., & Yue, K. (2017). Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method. Energy, 141, 97–107. https://doi.org/10.1016/j.energy.2017.09.052
  • Woodland B.J., Ziviani, D., E. Braun, J., & A. Groll, E. (2020). Considerations on alternative Organic Rankine Cycle congurations for low-grade waste heat recovery, Energy. https://doi.org/10.1016/j.energy.2019.116810
  • Wu, Y. T., Lei, B., Ma, C. F., Zhao, L., Wang, J. F., Guo, H., & Lu, Y. W. (2014). Study on the characteristics of expander power output used for offsetting pumping work consumption in Organic Rankine Cycles. Energies, 7(8), 4957–4971. https://doi.org/10.3390/en7084957
  • Yilmaz, C. (2020). Improving performance and thermoeconomic optimization of an existing binary geothermal power plant: A case study. Journal of Thermal Science and Technology, 40(1), 37–51.
  • Yu, H., Feng, X., & Wang, Y. (2015). A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat. Energy, 90, 36–46. https://doi.org/10.1016/j.energy.2015.02.059
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sadık Ata 0000-0002-6791-593X

Mehmet Aksoy 0000-0002-1777-1341

Remzi Şahin 0000-0001-7656-7538

Ali Kahraman 0000-0002-5598-5017

Publication Date July 15, 2022
Submission Date December 5, 2021
Acceptance Date April 14, 2022
Published in Issue Year 2022

Cite

APA Ata, S., Aksoy, M., Şahin, R., Kahraman, A. (2022). Jeotermal ısı kaynaklı Organik Rankine Çevriminde kuru ve izantropik akışkanların çevresel etkilerinin ve termodinamik performanslarının karşılaştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(3), 726-743. https://doi.org/10.17714/gumusfenbil.1032790