Research Article
BibTex RIS Cite

A geometric process approximation for debugging and testing costs of a software product

Year 2023, , 66 - 72, 15.01.2023
https://doi.org/10.17714/gumusfenbil.1160739

Abstract

In this study, the geometric process (GP) model is considered in order to calculate the debugging and testing costs of a software product. Under the assumption of the GP model, the debugging and testing costs of the software product are obtained depending on the first and second moment functions of the GP. It is observed that the values of the first and second moment functions of the process must be known in order to calculate the debugging and testing costs. At the same time, the calculation of moment functions also depends on both the distribution of the first interarrival time of the GP and the estimates of the model and distribution parameters. In this study, the proposed debugging and testing costs are calculated for the data set containing 136 failure times of a real-time command and control system. For this dataset, it has been shown in previous studies that the GP with gamma distribution can be proposed as a model. Under gamma distribution assumption, the maximum likelihood estimates of the model parameters are obtained. Using the estimates of the model parameters, the first and second moment functions of the GP are calculated with the help of the numerical methods proposed for these functions. Finally, the debugging and testing costs are obtained for the data set.

References

  • Aydoğdu, H., & Altındağ, Ö. (2015). Computation of the mean value and variance functions in geometric process, Journal of Statistical Computation and Simulation, 86 (5), 986-995, https://doi.org/10.1080/00949655.2015.1047778.
  • Aydoğdu, H., & Karabulut, İ. (2014). Power Series Expansions for the Distribution and Mean Value Function of a Geometric Process with Weibull Interarrival Times, Naval Research Logistics, 61, 599-603, https://doi.org/10.1002/nav.21605.
  • Aydoğdu, H., Karabulut İ., & Şen, E. (2013). On the Exact Distribution and Mean Value Function of a Geometric Process with Exponential Interarrival Times, Statistics and Probability Letters, 83, 2577-2582, https://doi.org/10.1016/j.spl.2013.08.003.
  • Aydoğdu, H., Şenoğlu, B., & Kara, M. (2010). Parameter Estimation in Geometric Process with Weibull Distribution, Applied Mathematics and Computation, 217 (6), 2657-2665, https://doi.org/10.1016/j.amc.2010.08.003.
  • Chan, J. S. K., Lam, Y., & Leung, D. Y. (2004). Statistical Inference for Geometric Processes with Gamma Distributions, Computational Statistics and Data Analysis, 47 (3), 565-581, https://doi.org/10.1016/j.csda.2003.12.004.
  • Gutjahr, W. J. (1995). Optimal test distributions for software failure cost estimation, IEEE Transactions on Software Engineering, 21, 219–228, doi: 10.1109/32.372149.
  • Lam, Y. (2007). The Geometric Processes and Its Applications, World Scientific, Singapore.
  • Lam, Y., & Chan, J. S. K. (1998). Statistical Inference for Geometric Processes with Lognormal Distribution, Computational Statistics and Data Analysis, 27 (1), 99-112, https://doi.org/10.1016/S0167-9473(97)00046-7.
  • Musa, J. D., Iannino, A., & Okumoto, K. (1987). Software Reliability: Measurement, Prediction, Application, McGraw-Hill, New York.
  • Pekalp, M. H., & Aydoğdu, H. (2018). An Integral Equation for the Second Moment Function of a Geometric Process and Its Numerical Solution, Naval Research Logistics, 65 (2):176‐184, https://doi.org/10.1002/nav.21791.
  • Pekalp, M. H., & Aydoğdu, H. (2021). Power Series Expansions for The Probability Distribution, Mean Value and Variance Functions of a Geometric Process with Gamma Interarrival Times, Journal of Computational and Applied Mathematics, doi: 10.1016/j.cam.2020.113287.
  • Pekalp, M. H., Aydoğdu, H., & Türkman, K.F. (2022). Discriminating Between Some Lifetime Distributions in Geometric Counting Processes, Communications in Statistics-Simulation and Computation, 51 (3), 715-737, https://doi.org/10.1080/03610918.2019.1657452.
  • Pham, H., & Wang, H. (2001). A Quasi-Renewal Process for Software Reliability and Testing Costs, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 31 (6), 623-631, doi: 10.1109/3468.983418.
  • Pham, H., & Zhang, X. (1997). An NHPP software reliability model and its comparison, International Journal of Reliability, Quality and Safety Engineering, 4 (3), 269-282, https://doi.org/10.1142/S0218539397000199.
  • Pham, L., & Pham, H. (2000). Software reliability models with time-dependent hazard function based on Bayesian approach, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 30 (1), 25-35, doi: 10.1109/3468.823478.
  • Tang, Y., & Lam, Y. (2007). Numerical Solution to an Integral Equation in Geometric Process, Journal of Statistical Computation and Simulation, 77, 549-560, https://doi.org/10.1080/10629360600565343.
  • Tokuno, K., & Yamada, S. (1999). Stochastic software safety/reliability measurement and its application, Annals of Software Engineering, 8, 123-145, https://doi.org/10.1023/A:1018967011900.

Bir yazılım ürününün hata ayıklama ve test etme maliyetleri için bir geometrik süreç yaklaşımı

Year 2023, , 66 - 72, 15.01.2023
https://doi.org/10.17714/gumusfenbil.1160739

Abstract

Bu çalışmada, bir yazılım ürününün hata ayıklama ve test etme maliyetlerinin hesaplanması amacıyla geometrik süreç (GS) modeli ele alınacaktır. GS model varsayımı altında, yazılım ürününün hata ayıklama ve test etme maliyetleri GS’nin birinci ve ikinci moment fonksiyonlarına bağlı olarak elde edilmektedir. Bu durumda, maliyetlerin hesaplanabilmesi için sürecin birinci ve ikinci moment fonksiyonlarının değerlerinin bilinmesi gerekmektedir. Aynı zamanda, moment fonksiyonlarının hesabı da hem GS'nin ilk olay zamanının dağılımına hem de model ve dağılım parametrelerinin tahminlerine bağlıdır. Bu çalışmada, gerçek zamanlı bir komut ve kontrol sisteminin 136 hata zamanını içeren veri kümesi için hata ayıklama ve test etme maliyetleri hesap edilecektir. İlgili veri kümesi için daha önceki çalışmalarda ilk olayın gerçekleşme zamanı gamma dağılımına sahip olan bir GS’nin model olarak önerilebileceği gösterilmiştir. Bu nedenle, gamma dağılımı varsayımı altında model parametrelerinin en çok olabilirlik tahminleri elde edilmektedir. Model parametrelerinin tahmin değerleri kullanılarak GS’nin birinci ve ikinci moment fonksiyonları, bu fonksiyonlar için önerilen sayısal yöntemler yardımıyla hesaplanmaktadır. Son olarak, veri kümesi için hata ayıklama ve test etme maliyetleri elde edilmektedir.

References

  • Aydoğdu, H., & Altındağ, Ö. (2015). Computation of the mean value and variance functions in geometric process, Journal of Statistical Computation and Simulation, 86 (5), 986-995, https://doi.org/10.1080/00949655.2015.1047778.
  • Aydoğdu, H., & Karabulut, İ. (2014). Power Series Expansions for the Distribution and Mean Value Function of a Geometric Process with Weibull Interarrival Times, Naval Research Logistics, 61, 599-603, https://doi.org/10.1002/nav.21605.
  • Aydoğdu, H., Karabulut İ., & Şen, E. (2013). On the Exact Distribution and Mean Value Function of a Geometric Process with Exponential Interarrival Times, Statistics and Probability Letters, 83, 2577-2582, https://doi.org/10.1016/j.spl.2013.08.003.
  • Aydoğdu, H., Şenoğlu, B., & Kara, M. (2010). Parameter Estimation in Geometric Process with Weibull Distribution, Applied Mathematics and Computation, 217 (6), 2657-2665, https://doi.org/10.1016/j.amc.2010.08.003.
  • Chan, J. S. K., Lam, Y., & Leung, D. Y. (2004). Statistical Inference for Geometric Processes with Gamma Distributions, Computational Statistics and Data Analysis, 47 (3), 565-581, https://doi.org/10.1016/j.csda.2003.12.004.
  • Gutjahr, W. J. (1995). Optimal test distributions for software failure cost estimation, IEEE Transactions on Software Engineering, 21, 219–228, doi: 10.1109/32.372149.
  • Lam, Y. (2007). The Geometric Processes and Its Applications, World Scientific, Singapore.
  • Lam, Y., & Chan, J. S. K. (1998). Statistical Inference for Geometric Processes with Lognormal Distribution, Computational Statistics and Data Analysis, 27 (1), 99-112, https://doi.org/10.1016/S0167-9473(97)00046-7.
  • Musa, J. D., Iannino, A., & Okumoto, K. (1987). Software Reliability: Measurement, Prediction, Application, McGraw-Hill, New York.
  • Pekalp, M. H., & Aydoğdu, H. (2018). An Integral Equation for the Second Moment Function of a Geometric Process and Its Numerical Solution, Naval Research Logistics, 65 (2):176‐184, https://doi.org/10.1002/nav.21791.
  • Pekalp, M. H., & Aydoğdu, H. (2021). Power Series Expansions for The Probability Distribution, Mean Value and Variance Functions of a Geometric Process with Gamma Interarrival Times, Journal of Computational and Applied Mathematics, doi: 10.1016/j.cam.2020.113287.
  • Pekalp, M. H., Aydoğdu, H., & Türkman, K.F. (2022). Discriminating Between Some Lifetime Distributions in Geometric Counting Processes, Communications in Statistics-Simulation and Computation, 51 (3), 715-737, https://doi.org/10.1080/03610918.2019.1657452.
  • Pham, H., & Wang, H. (2001). A Quasi-Renewal Process for Software Reliability and Testing Costs, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 31 (6), 623-631, doi: 10.1109/3468.983418.
  • Pham, H., & Zhang, X. (1997). An NHPP software reliability model and its comparison, International Journal of Reliability, Quality and Safety Engineering, 4 (3), 269-282, https://doi.org/10.1142/S0218539397000199.
  • Pham, L., & Pham, H. (2000). Software reliability models with time-dependent hazard function based on Bayesian approach, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 30 (1), 25-35, doi: 10.1109/3468.823478.
  • Tang, Y., & Lam, Y. (2007). Numerical Solution to an Integral Equation in Geometric Process, Journal of Statistical Computation and Simulation, 77, 549-560, https://doi.org/10.1080/10629360600565343.
  • Tokuno, K., & Yamada, S. (1999). Stochastic software safety/reliability measurement and its application, Annals of Software Engineering, 8, 123-145, https://doi.org/10.1023/A:1018967011900.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Hilmi Pekalp 0000-0002-5183-8394

Halil Aydoğdu 0000-0001-5337-5277

Publication Date January 15, 2023
Submission Date August 11, 2022
Acceptance Date November 15, 2022
Published in Issue Year 2023

Cite

APA Pekalp, M. H., & Aydoğdu, H. (2023). Bir yazılım ürününün hata ayıklama ve test etme maliyetleri için bir geometrik süreç yaklaşımı. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(1), 66-72. https://doi.org/10.17714/gumusfenbil.1160739