Research Article
BibTex RIS Cite

Improvement of lichen reinforced soybean oil based coatings and their applications on textile

Year 2024, , 673 - 684, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1207911

Abstract

In this study, a soybean oil-based, UV-curable oligomer was synthesized and then included in coating formulations together with lichen particles. The prepared coating formulations were applied on cotton fabrics as an environmentally friendly coating material and cured by a green process (UV-curing). The lichen particles were employed in order to enhance the bonding mechanism between the cotton fabric and coating material by improving the overall mechanical properties as well. For a better compatibility between the lichen particles and oligomer, the lichen surfaces were modified by two different green process (enzyme and UV-light). The synthesized oligomer was characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies, respectively. The surface modified lichen particles were characterized by X-ray diffraction (XRD) analysis. After the application of bio-based coating formulations, the coated UV-cured fabrics were characterized in terms of surface characteristics and mechanical properties by using light microscopy, tensile, and abrasion resistance testing. According to the overall results, the coated and UV-cured cotton fabrics can be used as an environmentally friendly alternative in terms of coating material and technique, to the conventional petrochemical-coated outdoor textiles (tarpaulin, tent fabric etc.).

References

  • Aliverdipour, N., Ezazshahabi, N., & Mousazadegan, F. (2020). Characterization of the effect of fabric’s tensile behavior and sharp object properties on the resistance against penetration. Forensic Science International, 306, 110097. https://doi.org/10.1016/j.forsciint.2019.110097
  • ASTM D1652-11e1, Standard Test Method for Epoxy Content of Epoxy Resins , ASTM International, West Conshohocken, PA, 2011, www.astm.org. (2011).
  • Baştürk, E., İnan, T., & Güngör, A. (2013). Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating. Progress in Organic Coatings, 76(6), 985-992. https://doi.org/10.1016/j.porgcoat.2012.10.007
  • Bhatti, I. A., Zia, K. M., Ali, Z., & Zuber, M. (2012). Modification of cellulosic fibers to enhance their dyeability using UV-irradiation. Carbohydrate Polymers, 89(3), 783-787. https://doi.org/10.1016/j.carbpol.2012.04.010
  • Çakmakçı, E. (2017). Allylamino diphenylphosphine oxide and poss containing flame retardant photocured hybrid coatings. Progress in Organic Coatings, 105, 37-47. https://doi.org/10.1016/j.porgcoat.2016.11.013
  • Elkhateeb, W. A., El-Ghwas, D. E., & Daba, G. M. (2022). Lichens uses surprising uses of lichens that improve human life. J Biomed Res Environ Sci, 3(2), 189-194. https://doi.org/10.37871/jbres1420
  • Eyupoglu, C., Eyupoglu, S., & Merdan, N. (2022). Investigation of dyeing properties of mohair fiber dyed with natural dyes obtained from candelariella reflexa. Journal of Natural Fibers, 19(16), 12829-12848. https://doi.org/10.1080/15440478.2022.2076273
  • Gupta, P., Uniyal, V., & Naithani, S. (2013). Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive. Carbohydrate Polymers, 94(2), 843-849. https://doi.org/10.1016/j.carbpol.2013.02.012
  • ISO 5470-2:2021 Rubber- or plastics-coated fabrics — Determination of abrasion resistance — Part 2: Martindale abrader. (2021).
  • ISO 13934-1:2013 Textiles — Tensile properties of fabrics — Part 1: Determination of maximum force and elongation at maximum force using the strip method. (2013).
  • Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V., & Saravanakumar, S. (2019). Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate polymers, 217, 178-189. https://doi.org/10.1016/j.carbpol.2019.04.063
  • Koyuncu, H., & Kul, A. R. (2020). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Applied Water Science, 10(2), 1-14. https://doi.org/10.1007/s13201-020-1156-9
  • Liu, Z., Wang, L., Bao, C., Li, X., Cao, L., Dai, K., & Zhu, L. (2011). Cross-linked PEG via degradable phosphate ester bond: synthesis, water-swelling, and application as drug carrier. Biomacromolecules, 12(6), 2389-2395. https://doi.org/10.1021/bm2004737
  • Mansour, H. F., & Heffernan, S. (2011). Environmental aspects on dyeing silk fabric with sticta coronata lichen using ultrasonic energy and mild mordants. Clean Technologies and Environmental Policy, 13(1), 207-213. https://doi.org/10.1007/s10098-010-0296-2
  • MISTIK, S. İ., Koçak, E. D., & Merdan, N. (2016). Effect of the ecological methods on the surface modification of the kenaf fibers. Materials Science, 22(3), 409-414. https://doi.org/10.5755/j01.ms.22.3.8694
  • Mohamed, N., Wan Ahmad, W., Ngalib, K., Ahmad, M., Ab Kadir, M., & Ismail, A. (2014). Microwave-Enzyme-Assisted Extraction and Dyeing of Lichen Species: Parmotrema praesorediosum. Paper presented at the Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014).
  • Nakagaito, A. N., & Yano, H. (2008). Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose, 15(2), 323-331. https://doi.org/10.1007/s10570-007-9168-2
  • Prihatiningtyas, I., Hartanto, Y., & Van der Bruggen, B. (2021). Ultra-high flux alkali-treated cellulose triacetate/cellulose nanocrystal nanocomposite membrane for pervaporation desalination. Chemical Engineering Science, 231, 116276. https://doi.org/10.1016/j.ces.2020.116276
  • Räisänen, R. (2023). Natural Colorants from Lichens and Mushrooms. Handbook of Natural Colorants, 317-331. https://doi.org/10.1002/9781119811749.ch14
  • Rowe, M. C., & Brewer, B. J. (2018). AMORPH: A statistical program for characterizing amorphous materials by X-ray diffraction. Computers & Geosciences, 120, 21-31. https://doi.org/10.1016/j.cageo.2018.07.004
  • Sayem, A. S. M., Haider, J., & Sayeed, M. A. (2020). Development and characterisation of multi-layered jute fabric-reinforced HDPE composites. Journal of Composite Materials, 54(14), 1831-1845. https://doi.org/10.1177/0021998319885440
  • Shukla, P., Upreti, D., Nayaka, S., & Tiwari, P. (2014). Natural dyes from Himalayan lichens. Indian Journal of Traditional Knowledge, 13, 195-201.
  • Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98(16), 3000-3011. https://doi.org/10.1016/j.biortech.2006.10.022
  • Stanescu, M. D., Dochia, M., Radu, D., & Sirghie, C. (2010). Green solution for cotton scouring. Fibres & Textiles in Eastern Europe, 18(3), 80.
  • Uysal, N., Acik, G., & Tasdelen, M. A. (2017). Soybean oil based thermoset networks via photoinduced CuAAC click chemistry. Polymer International, 66(7), 999-1004. https://doi.org/10.1002/pi.5346
  • Witkowska, B., & Frydrych, I. (2004). A comparative analysis of tear strength methods. Fibres and Textiles in Eastern Europe, 12(2), 42-47.
  • Wu, Q., Hu, Y., Tang, J., Zhang, J., Wang, C., Shang, Q., . . . Lei, W. (2018). High-performance soybean-oil-based epoxy acrylate resins:“Green” synthesis and application in UV-curable coatings. ACS Sustainable Chemistry & Engineering, 6(7), 8340-8349. https://doi.org/10.1021/acssuschemeng.8b00388
  • Wu, Y., Liu, A., Li, W., & Li, Z. (2019). Synthesis of carborane acrylate and flame retardant modification on silk fabric via graft copolymerization with phosphate‐containing acrylate. Fire and Materials, 43(7), 880-891. https://doi.org/10.1002/fam.2748
  • Yildiz, Z. (2022). Usage of UV-Curable Soybean Oil Based Coating Formulations for Pretreated Cotton Fabrics. Textile and Apparel, 32(3), 232-242. https://doi.org/10.32710/tekstilvekonfeksiyon.940434
  • Yildiz, Z., Onen, H. A., Gungor, A., Wang, Y., & Jacob, K. (2018). Effects of NCO/OH ratio and reactive diluent type on the adhesion strength of polyurethane methacrylates for cord/rubber composites. Polymer-Plastics Technology and Engineering, 57(10), 935-944. https://doi.org/10.1080/03602559.2017.1364382
  • Zuber, M., Zia, K. M., Bhatti, I. A., Ali, Z., Arshad, M. U., & Saif, M. J. (2012). Modification of cellulosic fibers by UV-irradiation. Part II: After treatments effects. International Journal of Biological Macromolecules, 51(5), 743-748. https://doi.org/10.1016/j.ijbiomac.2012.07.001

Liken takviyeli, soya fasulyesi yağı esaslı kaplamaların geliştirilmesi ve tekstil uygulamaları

Year 2024, , 673 - 684, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1207911

Abstract

Bu çalışmada soya fasulyesi yağı esaslı, UV ışınları ile kürlenebilen bir oligomer sentezlenmiş ve bu oligomer liken partikülleri ile takviye edilerek kaplama formülasyonları hazırlanmıştır. Geliştirilen kaplama formülasyonları pamuk kumaşlar üzerine çevre dostu bir kaplama malzemesi olarak uygulanmış ve çevre dostu bir yöntemle (UV ışınları ile) kürlenmiştir. Liken partikülleri, kaplama malzemesi ile pamuk kumaş arasında bağlanma mekanizmasını geliştirmek ve sonucunda mekanik özellikleri iyileştirmek amacı ile kullanılmıştır. Liken ve oligomer arasındaki uyumu arttırmak için liken partiküllerinin yüzeyi çevre dostu iki yöntem ile (enzimatik ve UV ışınları) modifiye edilmiştir. Sentezlenen biyo-esaslı oligomer Fourier dönüşümlü kızılötesi (FTIR) ve proton nükleer manyetik rezonans (1H NMR) spektroskopileri, modifiye edilen liken partikülleri ise X-ışını kırınım difraktometresi (XRD) ile karakterize edilmiştir. Biyo-esaslı kaplama formülasyonları ile kaplanan pamuk kumaşlar ışık mikroskobu ile incelenmiş, mekanik özelliklerini tespit etmek amacı ile mukavemet ve sürtünme dayanımı testleri gerçekleştirilmiştir. Tüm bulgular değerlendirildiğinde biyo-esaslı kaplama malzemesi ile kaplanan pamuk kumaşların, geleneksel petrokimyasal kaplı dış mekân tekstillerine (tente, branda vb.) çevre dostu malzeme ve yöntemle üretilen bir alternatif olarak kullanılabileceği sonucuna ulaşılmıştır.

References

  • Aliverdipour, N., Ezazshahabi, N., & Mousazadegan, F. (2020). Characterization of the effect of fabric’s tensile behavior and sharp object properties on the resistance against penetration. Forensic Science International, 306, 110097. https://doi.org/10.1016/j.forsciint.2019.110097
  • ASTM D1652-11e1, Standard Test Method for Epoxy Content of Epoxy Resins , ASTM International, West Conshohocken, PA, 2011, www.astm.org. (2011).
  • Baştürk, E., İnan, T., & Güngör, A. (2013). Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating. Progress in Organic Coatings, 76(6), 985-992. https://doi.org/10.1016/j.porgcoat.2012.10.007
  • Bhatti, I. A., Zia, K. M., Ali, Z., & Zuber, M. (2012). Modification of cellulosic fibers to enhance their dyeability using UV-irradiation. Carbohydrate Polymers, 89(3), 783-787. https://doi.org/10.1016/j.carbpol.2012.04.010
  • Çakmakçı, E. (2017). Allylamino diphenylphosphine oxide and poss containing flame retardant photocured hybrid coatings. Progress in Organic Coatings, 105, 37-47. https://doi.org/10.1016/j.porgcoat.2016.11.013
  • Elkhateeb, W. A., El-Ghwas, D. E., & Daba, G. M. (2022). Lichens uses surprising uses of lichens that improve human life. J Biomed Res Environ Sci, 3(2), 189-194. https://doi.org/10.37871/jbres1420
  • Eyupoglu, C., Eyupoglu, S., & Merdan, N. (2022). Investigation of dyeing properties of mohair fiber dyed with natural dyes obtained from candelariella reflexa. Journal of Natural Fibers, 19(16), 12829-12848. https://doi.org/10.1080/15440478.2022.2076273
  • Gupta, P., Uniyal, V., & Naithani, S. (2013). Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive. Carbohydrate Polymers, 94(2), 843-849. https://doi.org/10.1016/j.carbpol.2013.02.012
  • ISO 5470-2:2021 Rubber- or plastics-coated fabrics — Determination of abrasion resistance — Part 2: Martindale abrader. (2021).
  • ISO 13934-1:2013 Textiles — Tensile properties of fabrics — Part 1: Determination of maximum force and elongation at maximum force using the strip method. (2013).
  • Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V., & Saravanakumar, S. (2019). Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate polymers, 217, 178-189. https://doi.org/10.1016/j.carbpol.2019.04.063
  • Koyuncu, H., & Kul, A. R. (2020). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Applied Water Science, 10(2), 1-14. https://doi.org/10.1007/s13201-020-1156-9
  • Liu, Z., Wang, L., Bao, C., Li, X., Cao, L., Dai, K., & Zhu, L. (2011). Cross-linked PEG via degradable phosphate ester bond: synthesis, water-swelling, and application as drug carrier. Biomacromolecules, 12(6), 2389-2395. https://doi.org/10.1021/bm2004737
  • Mansour, H. F., & Heffernan, S. (2011). Environmental aspects on dyeing silk fabric with sticta coronata lichen using ultrasonic energy and mild mordants. Clean Technologies and Environmental Policy, 13(1), 207-213. https://doi.org/10.1007/s10098-010-0296-2
  • MISTIK, S. İ., Koçak, E. D., & Merdan, N. (2016). Effect of the ecological methods on the surface modification of the kenaf fibers. Materials Science, 22(3), 409-414. https://doi.org/10.5755/j01.ms.22.3.8694
  • Mohamed, N., Wan Ahmad, W., Ngalib, K., Ahmad, M., Ab Kadir, M., & Ismail, A. (2014). Microwave-Enzyme-Assisted Extraction and Dyeing of Lichen Species: Parmotrema praesorediosum. Paper presented at the Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014).
  • Nakagaito, A. N., & Yano, H. (2008). Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose, 15(2), 323-331. https://doi.org/10.1007/s10570-007-9168-2
  • Prihatiningtyas, I., Hartanto, Y., & Van der Bruggen, B. (2021). Ultra-high flux alkali-treated cellulose triacetate/cellulose nanocrystal nanocomposite membrane for pervaporation desalination. Chemical Engineering Science, 231, 116276. https://doi.org/10.1016/j.ces.2020.116276
  • Räisänen, R. (2023). Natural Colorants from Lichens and Mushrooms. Handbook of Natural Colorants, 317-331. https://doi.org/10.1002/9781119811749.ch14
  • Rowe, M. C., & Brewer, B. J. (2018). AMORPH: A statistical program for characterizing amorphous materials by X-ray diffraction. Computers & Geosciences, 120, 21-31. https://doi.org/10.1016/j.cageo.2018.07.004
  • Sayem, A. S. M., Haider, J., & Sayeed, M. A. (2020). Development and characterisation of multi-layered jute fabric-reinforced HDPE composites. Journal of Composite Materials, 54(14), 1831-1845. https://doi.org/10.1177/0021998319885440
  • Shukla, P., Upreti, D., Nayaka, S., & Tiwari, P. (2014). Natural dyes from Himalayan lichens. Indian Journal of Traditional Knowledge, 13, 195-201.
  • Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98(16), 3000-3011. https://doi.org/10.1016/j.biortech.2006.10.022
  • Stanescu, M. D., Dochia, M., Radu, D., & Sirghie, C. (2010). Green solution for cotton scouring. Fibres & Textiles in Eastern Europe, 18(3), 80.
  • Uysal, N., Acik, G., & Tasdelen, M. A. (2017). Soybean oil based thermoset networks via photoinduced CuAAC click chemistry. Polymer International, 66(7), 999-1004. https://doi.org/10.1002/pi.5346
  • Witkowska, B., & Frydrych, I. (2004). A comparative analysis of tear strength methods. Fibres and Textiles in Eastern Europe, 12(2), 42-47.
  • Wu, Q., Hu, Y., Tang, J., Zhang, J., Wang, C., Shang, Q., . . . Lei, W. (2018). High-performance soybean-oil-based epoxy acrylate resins:“Green” synthesis and application in UV-curable coatings. ACS Sustainable Chemistry & Engineering, 6(7), 8340-8349. https://doi.org/10.1021/acssuschemeng.8b00388
  • Wu, Y., Liu, A., Li, W., & Li, Z. (2019). Synthesis of carborane acrylate and flame retardant modification on silk fabric via graft copolymerization with phosphate‐containing acrylate. Fire and Materials, 43(7), 880-891. https://doi.org/10.1002/fam.2748
  • Yildiz, Z. (2022). Usage of UV-Curable Soybean Oil Based Coating Formulations for Pretreated Cotton Fabrics. Textile and Apparel, 32(3), 232-242. https://doi.org/10.32710/tekstilvekonfeksiyon.940434
  • Yildiz, Z., Onen, H. A., Gungor, A., Wang, Y., & Jacob, K. (2018). Effects of NCO/OH ratio and reactive diluent type on the adhesion strength of polyurethane methacrylates for cord/rubber composites. Polymer-Plastics Technology and Engineering, 57(10), 935-944. https://doi.org/10.1080/03602559.2017.1364382
  • Zuber, M., Zia, K. M., Bhatti, I. A., Ali, Z., Arshad, M. U., & Saif, M. J. (2012). Modification of cellulosic fibers by UV-irradiation. Part II: After treatments effects. International Journal of Biological Macromolecules, 51(5), 743-748. https://doi.org/10.1016/j.ijbiomac.2012.07.001
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emine Dilara Koçak 0000-0002-0656-6430

Zehra Yıldız 0000-0002-1573-2074

Görkem Yumuşak 0000-0002-5047-4357

Publication Date September 15, 2024
Submission Date November 21, 2022
Acceptance Date May 3, 2024
Published in Issue Year 2024

Cite

APA Koçak, E. D., Yıldız, Z., & Yumuşak, G. (2024). Liken takviyeli, soya fasulyesi yağı esaslı kaplamaların geliştirilmesi ve tekstil uygulamaları. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(3), 673-684. https://doi.org/10.17714/gumusfenbil.1207911