Research Article
BibTex RIS Cite

Heavy metal removal from aqueous solution with activated carbon (KB-A) obtained by boric acid ımpregnation on poplar wood sawdust

Year 2023, , 822 - 839, 15.10.2023
https://doi.org/10.17714/gumusfenbil.1265878

Abstract

In this study, the removal of heavy metals Pb(II), Cr(III), Zn(II) and Co(II) in wastewater with activated carbon (KB-A) obtained by boric acid impregnation to poplar sawdust (K-S) grown in the Van region was investigated. The parameters affecting adsorption were examined and optimum values were determined. For this purpose, the effects of different parameters such as solution pH, KB-A dosage, contact time and metal concentration were studied for their effects on the removal of heavy metals. As a result of the adsorption process, It was observed that the adsorption of all metals decreased with increasing temperature. The adsorption process was found to follow the Langmuir and Freundlich models. The maximum adsorption capacity values were determined as 30.89 mg g-1 for Cr(III), 30.49 mg g-1 for Pb(II), 30.30 mg g-1 for Zn(II) and 27.70 mg g-1 for Co(II). According to the thermodynamic parameter results, the adsorption process was spontaneous, and the reaction followed a pseudo-second-order kinetic model. The KB-A adsorption ability showed a trend ordered from large to small as Cr(III)˃ Pb(II) ˃Zn(II) ˃ Co(II).

References

  • Ahmet, C. & Sivrikaya, H. (2017). Mantar tahribatına uğramış titrek kavak odununun FT-IR yöntemiyle kimyasal analizi. Bartın Orman Fakültesi Dergisi, 19 (1), 139-147. https://doi.org/10.24011/barofd.29936
  • Akçin, G., Saltabas, O., Yeşilçimen, F., & Aslan, A. (2001). Kurutulmuş likenler tarafından sulu çözeltiden ağır metalin biyosorpsiyonu. Int. Jour. Kimya 11 (3), 141-146.
  • Akar, T., & Tunali, S. (2005). Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd (II) and Cu (II) ions from aqueous solutions. Minerals Engineering, 18(11), 1099-1109.
  • Al-Oweini, R. & El-Rassy, H. (2009). Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si (OR) 4 and R′′ Si (OR′) 3 precursors. Journal of Molecular Structure, 919 (1-3), 140-145. https://doi.org/10.1016/j.molstruc.2008.08.025
  • Argun, M. E. (2007). Kimyasal olarak modifiye edilmiş adsorbanlar kullanılarak ağır metal iyanlarının adsorpsiyonu [Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü].
  • Bakıcı Tanaydın, Z., Tanaydın, M. K., Ince, M. & Demirkıran, N. (2022). Ponza ile bakır iyonlarının ve kurşun iyonlarının adsorpsiyon karakteristikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12 (2), 581-596. https://doi: 10.17714/gumusfenbil.1003279
  • Balakrishnan, K. & Schwank, J. (1992). FTIR study of bimetallic Pt-Sn/Al2O3 Catalysts, Journal of Catalysis, 138 (2), 491-499. https://doi.org/10.1016/0021-9517(92)90301-W
  • Beşergil, B. (2015). Enstrümantal Analiz Temel İlkeler. (1. Baskı). Ankara. Gazi Kitabevi.
  • Celik, A., & Demirbaş, A. (2005). Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energy sources, 27(12), 1167-1177.
  • Chen, Y., Mastalerz, M. & Schimmelmann, A. (2012). Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology, 104, 22-33. https://doi.org/10.1016/j.coal.2012.09.001
  • Chompoothawat, N., Wongthanate, J., Ussawarujikulchai, A., & Prapagdee, B. (2010). Removal of cadmium ion from aqueous solution by exopolysaccharide-producing bacterium, Ralstonia sp, Ralstonia sp. Fresenius Environmental Bulletin, 19, 2919- 2923.
  • Corazzari, I., Nisticò, R., Turci, F., Faga, M. G., Franzoso, F., Tabasso, S. & Magnacca, G. (2015). Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity, Polymer Degradation and Stability, 112,1-9. https://doi.org/10.1016/j.polymdegradstab.2014.12.006
  • El Nemr, A., El Sikaily, A., Khaled, A., & Abdelwahab, O. (2007). Removal of toxic chromium (VI) from aqueous solution by activated carbon using Casuarina equisetifolia. Chemistry and Ecology, 23(2), 119-129
  • Gürten, İ. I. (2008). Çay atığından adsorbent üretimi ve üretilen adsorbentin adsorpsiyon özelliklerinin incelenmesi [Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü].
  • Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical engineering journal, 70(2), 115-124..
  • Keklikcioğlu Çakmak, N. & Topal Canbaz, G. (2020). TiO2 Nanopartikülü ve TiO2/Aktif Çamur Sentezi ile Sulu Çözeltiden Cu (II) İyonlarının Adsorpsiyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10 (1), 86-98. https://doi: 10.17714/gumusfenbil.514285 Kholodkov, I., Biederman, H., Slavınská, D., Choukourov, A. & Trchova, M. (2003). Plasma polymers prepared by RF sputtering of polyethylene, Vacuum, 70 (4),505-509. https://doi.org/10.1016/S0042-207X(02)00702-9
  • Kobayashi, H., Karasawa, H., Miyase, T. & Fukushıma, S. (1984). Studies on the constituents of cistanchis herba. III. isolation and structures of new phenylpropanoid glycosides, Cistanosides a and b. Chemical and Pharmaceutical Bulletin, 32 (8): 3009-3014. https://doi.org/10.1248/cpb.32.3009
  • Krishnani, K. K., Meng, X., Christodoulatos, C., & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of hazardous materials, 153(3), 1222-1234.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
  • Lagergren, S. (1898). Zur Theorie der sogenannten Adsorp- tion gelöster Stoffe. Kungliga Svenska Vetenskapsakade- miens. Handlingar, 24, 1-39.
  • Liu, Q., Wang, S., Zheng, Y., Luo, Z. & Cen, K. (2008). Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Journal of Analytical And Applied Pyrolysis, 82 (1), 170-177. https://doi.org/10.1016/j.jaap.2008.03.007
  • Meena, A., K., Mishra, G., K., Rai, P., K., Rajagopal, C., Nagar, P., N., Removal of heavy metal ions from aqueous solutions using carbon aerogel as anadsorbant. Journal of Hazardous Materials, B122: 161- 170 (2005).
  • Mier, M. V., Callejas, R. L., Gehr, R., Cisneros, B. E. J., & Alvarez, P. J. (2001). Heavy metal removal with mexican clinoptilolite:: multi-component ionic exchange. Water research, 35(2), 373-378.
  • Nwuche, C. O., & Ugoji, E. O. (2008). Effects of heavy metal pollution on the soil microbial activity. International Journal of Environmental Science & Technology, 5, 409-414.
  • Özcan, A. S. (2010). Doğal bentonitin karakterizasyonu ve kurşun iyonlarının adsorpsiyon yeteneği. Balıkkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 12(2), 85-97.
  • Pandey, K. K., Pitman, A. J. (2003) Ftır Studies Of The Changes İn Wood Chemistry Following Decay By Brown-Rot And White-Rot Fungi, International Biodeterioration ve Biodegradation, 52 (3), 151-160.
  • Rajgopal, S., Karthikeyan, T., Kumar, B. P., & Miranda, L. R. (2006). Utilization of fluidized bed reactor for the production of adsorbents in removal of malachite green. Chemical Engineering Journal, 116(3), 211-217.
  • Shen, D. K., Gu, S., Luo, K. H., Wang, S. R. & Fang, M. X. (2010). The pyrolytic degradation of wood-derived lignin from pulping process. Bioresource technology, 101(15),6136-6146. https://doi.org/10.1016/j.biortech.2010.02.078
  • Teker, M., Saltabaş, Ö., & İmamoğlu, M. (1997). Pirinç gövdelerinden aktif karbon ile kobaltın adsorpsiyonu. Çevre Bilimleri ve Sağlığı Dergisi, Bölüm A, 32(8), 2077-2086.
  • Yilgor, N., Dogu, D., Moore, R., Terzi, E. & Kartal, S. N. (2013). Evaluation of fungal deterioration in liquidambarorientalis mill heartwood by FT-IR and light microscopy, Bio Resources, 8(2), 2805-2826.
  • Yuan, Y., Cai, X., Tan, B., Zhou, S. & Xing, B. (2018). Molecular İnsights into reversible redox sites in solid-phase humic substances as examined by electrochemical in situ FTIR and two-dimensional correlation spectroscopy, Chemical Geology, 494, 136-143. https://doi.org/10.1016/j.chemgeo.2018.07.029
  • Zvinowanda, C. M., Okonkwo, J. O., Shabalala, P. N., & Agyei, N. M. (2009). A novel adsorbent for heavy metal remediation in aqueous environments. International Journal of Environmental Science & Technology, 6, 425-434.
  • Zulkali, M. M. D., Ahmad, A. L., & Norulakmal, N. H. (2006). Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution. Bioresource technology, 97(1), 21-25.

Kavak ağacı talaşına borik asit impregnasyon ile elde edilmiş aktif karbon (KB-A) ile sulu çözeltiden ağır metal giderimi

Year 2023, , 822 - 839, 15.10.2023
https://doi.org/10.17714/gumusfenbil.1265878

Abstract

Bu çalışmada, Van yöresinde yetişen kavak ağacı talaşına (K-S) borik asit impregnasyonu ile elde edilmiş aktif karbon (KB-A) ile atık sulardaki Pb(II), Cr(III), Zn(II) ve Co(II) ağır metallerin uzaklaştırılması çalışıldı. Çalışmada adsorpsiyona etki eden parametreler incelendi ve optimum değerler tespit edildi. Bu amaçla çözelti pH’sı, KB-A miktarı, temas süresi ve metal konsantrasyonu gibi farklı parametrelerin ağır metal uzaklaştırma işlemi üzerinde etkileri incelendi. Adsorpsiyon işlemi sonucunda, çalışılan tüm metallerin adsorpsiyonu, sıcaklık artıkça azaldığı görüldü. Adsorpsiyonun Langmuir ve Freundlich modellerine uyduğu görüldü. Maksimum adsorpsiyon kapasitesi değerleri Cr(III) için 30.89 mg g-1, Pb(II) için 30.49 mg g-1, Zn(II) için 30.30 mg g-1 ve Co(II) için 27.70 mg g-1olduğu belirlendi. Termodinamik parametre sonuçlarına göre, adsorpsiyonun kendiliğinden olduğunu, reaksiyon kinetik olarak yalancı ikinci dereceden modele uyduğu görüldü. KB-A adsorpsiyon kabiliyeti büyükten küçüğe Cr(III)˃ Pb(II) ˃Zn(II) ˃ Co(II) şeklinde sıralanan bir eğilim gösterdi.

References

  • Ahmet, C. & Sivrikaya, H. (2017). Mantar tahribatına uğramış titrek kavak odununun FT-IR yöntemiyle kimyasal analizi. Bartın Orman Fakültesi Dergisi, 19 (1), 139-147. https://doi.org/10.24011/barofd.29936
  • Akçin, G., Saltabas, O., Yeşilçimen, F., & Aslan, A. (2001). Kurutulmuş likenler tarafından sulu çözeltiden ağır metalin biyosorpsiyonu. Int. Jour. Kimya 11 (3), 141-146.
  • Akar, T., & Tunali, S. (2005). Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd (II) and Cu (II) ions from aqueous solutions. Minerals Engineering, 18(11), 1099-1109.
  • Al-Oweini, R. & El-Rassy, H. (2009). Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si (OR) 4 and R′′ Si (OR′) 3 precursors. Journal of Molecular Structure, 919 (1-3), 140-145. https://doi.org/10.1016/j.molstruc.2008.08.025
  • Argun, M. E. (2007). Kimyasal olarak modifiye edilmiş adsorbanlar kullanılarak ağır metal iyanlarının adsorpsiyonu [Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü].
  • Bakıcı Tanaydın, Z., Tanaydın, M. K., Ince, M. & Demirkıran, N. (2022). Ponza ile bakır iyonlarının ve kurşun iyonlarının adsorpsiyon karakteristikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12 (2), 581-596. https://doi: 10.17714/gumusfenbil.1003279
  • Balakrishnan, K. & Schwank, J. (1992). FTIR study of bimetallic Pt-Sn/Al2O3 Catalysts, Journal of Catalysis, 138 (2), 491-499. https://doi.org/10.1016/0021-9517(92)90301-W
  • Beşergil, B. (2015). Enstrümantal Analiz Temel İlkeler. (1. Baskı). Ankara. Gazi Kitabevi.
  • Celik, A., & Demirbaş, A. (2005). Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energy sources, 27(12), 1167-1177.
  • Chen, Y., Mastalerz, M. & Schimmelmann, A. (2012). Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology, 104, 22-33. https://doi.org/10.1016/j.coal.2012.09.001
  • Chompoothawat, N., Wongthanate, J., Ussawarujikulchai, A., & Prapagdee, B. (2010). Removal of cadmium ion from aqueous solution by exopolysaccharide-producing bacterium, Ralstonia sp, Ralstonia sp. Fresenius Environmental Bulletin, 19, 2919- 2923.
  • Corazzari, I., Nisticò, R., Turci, F., Faga, M. G., Franzoso, F., Tabasso, S. & Magnacca, G. (2015). Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity, Polymer Degradation and Stability, 112,1-9. https://doi.org/10.1016/j.polymdegradstab.2014.12.006
  • El Nemr, A., El Sikaily, A., Khaled, A., & Abdelwahab, O. (2007). Removal of toxic chromium (VI) from aqueous solution by activated carbon using Casuarina equisetifolia. Chemistry and Ecology, 23(2), 119-129
  • Gürten, İ. I. (2008). Çay atığından adsorbent üretimi ve üretilen adsorbentin adsorpsiyon özelliklerinin incelenmesi [Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü].
  • Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical engineering journal, 70(2), 115-124..
  • Keklikcioğlu Çakmak, N. & Topal Canbaz, G. (2020). TiO2 Nanopartikülü ve TiO2/Aktif Çamur Sentezi ile Sulu Çözeltiden Cu (II) İyonlarının Adsorpsiyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10 (1), 86-98. https://doi: 10.17714/gumusfenbil.514285 Kholodkov, I., Biederman, H., Slavınská, D., Choukourov, A. & Trchova, M. (2003). Plasma polymers prepared by RF sputtering of polyethylene, Vacuum, 70 (4),505-509. https://doi.org/10.1016/S0042-207X(02)00702-9
  • Kobayashi, H., Karasawa, H., Miyase, T. & Fukushıma, S. (1984). Studies on the constituents of cistanchis herba. III. isolation and structures of new phenylpropanoid glycosides, Cistanosides a and b. Chemical and Pharmaceutical Bulletin, 32 (8): 3009-3014. https://doi.org/10.1248/cpb.32.3009
  • Krishnani, K. K., Meng, X., Christodoulatos, C., & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of hazardous materials, 153(3), 1222-1234.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
  • Lagergren, S. (1898). Zur Theorie der sogenannten Adsorp- tion gelöster Stoffe. Kungliga Svenska Vetenskapsakade- miens. Handlingar, 24, 1-39.
  • Liu, Q., Wang, S., Zheng, Y., Luo, Z. & Cen, K. (2008). Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Journal of Analytical And Applied Pyrolysis, 82 (1), 170-177. https://doi.org/10.1016/j.jaap.2008.03.007
  • Meena, A., K., Mishra, G., K., Rai, P., K., Rajagopal, C., Nagar, P., N., Removal of heavy metal ions from aqueous solutions using carbon aerogel as anadsorbant. Journal of Hazardous Materials, B122: 161- 170 (2005).
  • Mier, M. V., Callejas, R. L., Gehr, R., Cisneros, B. E. J., & Alvarez, P. J. (2001). Heavy metal removal with mexican clinoptilolite:: multi-component ionic exchange. Water research, 35(2), 373-378.
  • Nwuche, C. O., & Ugoji, E. O. (2008). Effects of heavy metal pollution on the soil microbial activity. International Journal of Environmental Science & Technology, 5, 409-414.
  • Özcan, A. S. (2010). Doğal bentonitin karakterizasyonu ve kurşun iyonlarının adsorpsiyon yeteneği. Balıkkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 12(2), 85-97.
  • Pandey, K. K., Pitman, A. J. (2003) Ftır Studies Of The Changes İn Wood Chemistry Following Decay By Brown-Rot And White-Rot Fungi, International Biodeterioration ve Biodegradation, 52 (3), 151-160.
  • Rajgopal, S., Karthikeyan, T., Kumar, B. P., & Miranda, L. R. (2006). Utilization of fluidized bed reactor for the production of adsorbents in removal of malachite green. Chemical Engineering Journal, 116(3), 211-217.
  • Shen, D. K., Gu, S., Luo, K. H., Wang, S. R. & Fang, M. X. (2010). The pyrolytic degradation of wood-derived lignin from pulping process. Bioresource technology, 101(15),6136-6146. https://doi.org/10.1016/j.biortech.2010.02.078
  • Teker, M., Saltabaş, Ö., & İmamoğlu, M. (1997). Pirinç gövdelerinden aktif karbon ile kobaltın adsorpsiyonu. Çevre Bilimleri ve Sağlığı Dergisi, Bölüm A, 32(8), 2077-2086.
  • Yilgor, N., Dogu, D., Moore, R., Terzi, E. & Kartal, S. N. (2013). Evaluation of fungal deterioration in liquidambarorientalis mill heartwood by FT-IR and light microscopy, Bio Resources, 8(2), 2805-2826.
  • Yuan, Y., Cai, X., Tan, B., Zhou, S. & Xing, B. (2018). Molecular İnsights into reversible redox sites in solid-phase humic substances as examined by electrochemical in situ FTIR and two-dimensional correlation spectroscopy, Chemical Geology, 494, 136-143. https://doi.org/10.1016/j.chemgeo.2018.07.029
  • Zvinowanda, C. M., Okonkwo, J. O., Shabalala, P. N., & Agyei, N. M. (2009). A novel adsorbent for heavy metal remediation in aqueous environments. International Journal of Environmental Science & Technology, 6, 425-434.
  • Zulkali, M. M. D., Ahmad, A. L., & Norulakmal, N. H. (2006). Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution. Bioresource technology, 97(1), 21-25.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yaşar Genel 0000-0002-0742-774X

Publication Date October 15, 2023
Submission Date March 15, 2023
Acceptance Date July 26, 2023
Published in Issue Year 2023

Cite

APA Genel, Y. (2023). Kavak ağacı talaşına borik asit impregnasyon ile elde edilmiş aktif karbon (KB-A) ile sulu çözeltiden ağır metal giderimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(4), 822-839. https://doi.org/10.17714/gumusfenbil.1265878