Research Article
BibTex RIS Cite

The effect of olivine serpentinization on uniaxial compressive strength and apparent porosity in basalts

Year 2024, , 197 - 207, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1337324

Abstract

In this study, a relationship was observed between increasing rate of serpentinization with rock’s uniaxial compressive strength (UCS) and apparent porosity, and the reasons for serpentinization were investigated. The study area, which is stratigraphically at different elevation levels, is divided into three classes (A1, M2 and M3) according to the alteration zones. Petrographic thin section studies and Scanning Electron Microscopy (SEM) analyses were also carried out. According to the thin section analysis, serpentinization of olivine was obtained 8.25% for A1 basalts, while this value was 75.5% for M3. SEM analyses indicated that the samples have some microstructural defects such as micro-cracks especially in M2 and M3 basalts. The correlation degree between serpentinization rate with UCS and n (%) of basalts varied between 0.96-0.97 both for dry and saturated samples. However, the average values (serpentinization rate, UCS, n (%)) of A1, M2 and M3 exhibited the higher correlation coefficients (r ≈1). The proximity of the volcanic cone and the fault line of M3, as well as its higher stratigraphical elevations, were considered to be the important factors causing serpentinization.

References

  • Alemdag, S., Gurocak, Z., Solanki, P., & Zaman, M. (2008). Estimation of bearing capacity of basalts at the Atasu dam site, Turkey. Bulletin of Engineering Geology and the Environment, 67, 79–85. https://doi.org/10.1007/s10064-007-0112-3.
  • Alemdağ, S., & Gürocak, Z. (2011). Üst Kretase yaşlı bazaltlarda (Trabzon/Türkiye) birleşik ayrışma indeksi (UAI) ile fiziksel, mekanik ve kimyasal özellikler arasındaki ilişkiler. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 23(1), 1-10.
  • Alkan, F., & Dağ, S. (2018). Gümüşhane yöresinde yüzeylenen magmatik kökenli bazı kayaların jeomekanik özellikleri arasındaki ilişkilerin araştırılması. Uludağ University Journal of The Faculty of Engineering, 23(2), 203–216. https://doi.org/10.17482/uumfd.409184.
  • Breuninger, T., Menschik, B., Demharter, A., Gamperl, M., & Thuro, K. (2021). Investigation of critical geotechnical, petrological and mineralogical parameters for landslides in deeply weathered dunite rock (Medellín, Colombia), International Journal of Environmental Research and Public Health, 18(21), 11141. https://doi.org/10.3390/ijerph182111141.
  • Dağ, S. (2018). Determining the degree of saturation of rocks as a function of time a case study from mountainous area of Turkey. Journal of Mountain Science, 15(10), 2307–2319. https://doi.org/10.1007/s11629-018-5055-6.
  • Deschamps, F., Godard, M., Guillot, S., & Hattori, K. (2013). Geochemistry of subduction zone serpentinites: A review. Lithos, 178, 96–127. https://doi.org/10.1016/j.lithos.2013.05.019.
  • Diamantis, K., Exarhakos, G., Migiros, G., & Gartzos, E. (2016). Evaluating the triaxial characteristics of ultamafic rocks from central Greece using the physical, dynamic and mechanical properties. Open Access Library Journal, 3(12), 1-20. https://doi.org/10.4236/oalib.1103214.
  • Escartin, J., Hirth, G., & Evans, B. (2001). Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology, 29, 1023–1026. https://doi.org/10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2
  • Franklin, J.A. (1970). Classification of rock according to its mechanical properties [Ph.D. Dissertation, University of London Imperial College, London, U.K.]
  • Giannakopoulou, P.P., Petrounias, P., Rogkala, A., Tsikouras, B., Stamatis, P.M., Pomonis, P., & Hatzipanagiotou, K. (2018). The influence of the mineralogical composition of ultramafic rocks on their engineering performance: a case study from the Veria-Naousa and Gerania Ophiolite Complexes (Greece). Geosciences, 8, 251. https://doi.org/10.3390/geosciences8070251.
  • Goodman, R.E. 1993. Engineering geology: rock in engineering construction. Wiley, New York. 412 pp.
  • Gurocak, Z., & Kılıç, R. (2005). Effect of weathering on the geomechanical properties of the Miocene basalts in Malatya, Eastern Turkey. Bulletin of Engineering Geology and the Environment, 64, 373–381. https://doi.org/10.1007/s10064-005-0005-2.
  • Gültekin, Z., & Dağ, S. (2023). Investigation of changes in geomechanical properties of sandstones under different saturation and anisotropy conditions example from Gümüşhane NE Türkiye. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 616–631. https://doi.org/10.17714/gumusfenbil.1274987.
  • ISRM. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay, Hudson (Eds.), Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics. ISRM Turkish National Group, (pp. 628). Ankara, Turkey.
  • Juneja, A., & Endait, M. (2017). Laboratory measurement of elastic waves in basalt rock. Measurement, 103, 217-226. https://doi.org/10.1016/j.measurement.2017.02.040.
  • Kahraman, S., Gunaydin, O., & Fener, M. (2005). The effect of porosity on the relation between uniaxial compressive strength and point load index. International Journal of Rock Mechanics and Mining Sciences, 42(4), 584–589. https://doi.org/10.1016/j.ijrmms.2005.02.004. Karaman K. & Kesimal A. (2015). Evaluation of the influence of porosity on the engineering properties of volcanic rocks from the Eastern Black Sea Region: NE Turkey. Arabian Journal of Geosciences, 8, 557–564. https://doi.org/10.1007/s12517-013-1217-6.
  • Karaman, K., & Bakhytzhan, A. (2020). Prediction of concrete strength from rock properties at the preliminary design stage. Geomechanics and Engineering, 23, 115-125. https://doi.org/10.12989/gae.2020.23.2.115.
  • Kaya, A., & Karaman, K. (2015). Utilizing the strength conversion factor in estimation of the uniaxial compressive strength from the point load index. Bulletin of Engineering Geology and the Environment, 75(1), 341–357. https://doi.org/10.1007/s10064-015-0721-1.
  • Kılıç¸ A., & Teymen, A. (2008). Determination of mechanical properties of rocks using simple methods. Bulletin of Engineering Geology and the Environment, 67, 237–244. https://doi.org/10.1007/s10064-008-0128-3.
  • Liu, Z., Zhang, C., Zhang, C., Wang, H., Zhou, H., & Zhou, B. (2022). Effects of amygdale heterogeneity and sample size on the mechanical properties of basalt. Journal of Rock Mechanics and Geotechnical Engineering, 14(1), 93-107. https://doi.org/10.1016/j.jrmge.2021.10.001.
  • Murthy, P.S.K., Gupta, S., Kumar, D., & Dixit, M. (2021).The effect of porosity on engineering properties of vesicular amygdaloidal basalts. International Journal of Engineering Applied Sciences and Technology, 5(11), 134-137. https://doi.org/10.33564/IJEAST.2021.v05i11.019.
  • Sharo, A.A. & Al-Tawaha, M.S. (2019). Prediction of engineering properties of basaltic rocks in Jordan. International Journal of Civil Engineering and Technology (IJCIET), 10(1), 1731-1739. https://doi.org/10.1007/s10706-018-0551-6.
  • Tarawneh, K., Amaireh, M., Abdelhadi, N., Titi, A., & Dweirj, M. (2022). Characterization of the physical and mechanical properties of the Harrat Ash Shaam Basalt (HASB)/Northeast Jordan. Open Journal of Civil Engineering, 12, 463-475. https://doi.org/10.4236/ojce.2022.124026.
  • Tuğrul, A., & Zarif I.H. (1999). Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from turkey. Engineering Geology, 51, 303–317. https://doi.org/10.1016/S0013-7952(98)00071-4.
  • Tüysüz, N., & Yaylalı, G. (2005). Jeoistatistik kavramlar ve bilgisayarlı uygulamalar, 1. Baskı, K.T.Ü. Yayınları, Trabzon.
  • Ulusay, R., Tureli, K., & Ider, M.H. (1994). Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Engineering Geology, 38, 135–157.
  • Youssouf Mahamat Tahir, O., & Karaman, K. (2021). Dönüşüm faktörünü kullanarak nokta yükü dayanım indeksinden bazaltların tek eksenli basınç dayanımının tahmini. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1242-1249. https://doi.org/10.17714/gumusfenbil.937826.
  • Yücel, C., Arslan, M., Temizel, İ., & Abdioğlu, E. (2014). Volcanic facies and mineral chemistry of Tertiary volcanics in the northern part of the Eastern Pontides, northeast Turkey: implications for pre-eruptive crystallization conditions and magma chamber processes. Mineralogy and Petrology, 108, 439–467. https://doi.org/10.1007/s00710-013-0306-2.

Bazaltlarda olivin serpantinleşmesinin tek eksenli basınç dayanımına ve görünür gözenekliliğe etkisi

Year 2024, , 197 - 207, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1337324

Abstract

Bu çalışmada, artan serpantinleşme oranı ile kayanın tek eksenli basınç dayanımı (UCS) ve görünür gözenekliliği arasında bir ilişki gözlemlenmiş ve serpantinleşmenin sebepleri araştırılmıştır. Stratigrafik olarak farklı kot seviyelerinde bulunan çalışma alanı, alterasyon zonlarına göre üç sınıfa (A1, M2 ve M3) ayrılmıştır. Ayrıca, petrografik ince kesit çalışmaları ve Taramalı Elektron Mikroskobu (SEM) analizleri yapılmıştır. İnce kesit analizine göre olivinin serpantinleşmesi A1 bazaltları için %8.25 iken, bu değer M3 bazaltları için %75.5'tir. SEM analizleri, numunelerin özellikle M2 ve M3 bazaltlarında mikro çatlaklar gibi bazı mikro-yapısal kusurlara sahip olduklarını göstermiştir. Serpantinleşme oranı ile UCS ve n (%) arasındaki korelasyon derecesi hem kuru hem de doygun numuneler için 0.96-0.97 arasında değişmiştir. Ancak A1, M2 ve M3'ün ortalama değerleri (serpantinleşme oranı, UCS, n (%)) daha yüksek korelasyon katsayıları (r ≈1) sergilemiştir. M3'ün volkan konisi ve fay hattına yakınlığı ile stratigrafik olarak daha yüksek kotlardaki konumu serpantinleşmeye neden olan önemli faktörler olarak değerlendirilmiştir.

Thanks

Yazarlar, SEM analizlerindeki yardımları için Öğr. Gör. Ümit Özsandık’a teşekkür ederler.

References

  • Alemdag, S., Gurocak, Z., Solanki, P., & Zaman, M. (2008). Estimation of bearing capacity of basalts at the Atasu dam site, Turkey. Bulletin of Engineering Geology and the Environment, 67, 79–85. https://doi.org/10.1007/s10064-007-0112-3.
  • Alemdağ, S., & Gürocak, Z. (2011). Üst Kretase yaşlı bazaltlarda (Trabzon/Türkiye) birleşik ayrışma indeksi (UAI) ile fiziksel, mekanik ve kimyasal özellikler arasındaki ilişkiler. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 23(1), 1-10.
  • Alkan, F., & Dağ, S. (2018). Gümüşhane yöresinde yüzeylenen magmatik kökenli bazı kayaların jeomekanik özellikleri arasındaki ilişkilerin araştırılması. Uludağ University Journal of The Faculty of Engineering, 23(2), 203–216. https://doi.org/10.17482/uumfd.409184.
  • Breuninger, T., Menschik, B., Demharter, A., Gamperl, M., & Thuro, K. (2021). Investigation of critical geotechnical, petrological and mineralogical parameters for landslides in deeply weathered dunite rock (Medellín, Colombia), International Journal of Environmental Research and Public Health, 18(21), 11141. https://doi.org/10.3390/ijerph182111141.
  • Dağ, S. (2018). Determining the degree of saturation of rocks as a function of time a case study from mountainous area of Turkey. Journal of Mountain Science, 15(10), 2307–2319. https://doi.org/10.1007/s11629-018-5055-6.
  • Deschamps, F., Godard, M., Guillot, S., & Hattori, K. (2013). Geochemistry of subduction zone serpentinites: A review. Lithos, 178, 96–127. https://doi.org/10.1016/j.lithos.2013.05.019.
  • Diamantis, K., Exarhakos, G., Migiros, G., & Gartzos, E. (2016). Evaluating the triaxial characteristics of ultamafic rocks from central Greece using the physical, dynamic and mechanical properties. Open Access Library Journal, 3(12), 1-20. https://doi.org/10.4236/oalib.1103214.
  • Escartin, J., Hirth, G., & Evans, B. (2001). Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology, 29, 1023–1026. https://doi.org/10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2
  • Franklin, J.A. (1970). Classification of rock according to its mechanical properties [Ph.D. Dissertation, University of London Imperial College, London, U.K.]
  • Giannakopoulou, P.P., Petrounias, P., Rogkala, A., Tsikouras, B., Stamatis, P.M., Pomonis, P., & Hatzipanagiotou, K. (2018). The influence of the mineralogical composition of ultramafic rocks on their engineering performance: a case study from the Veria-Naousa and Gerania Ophiolite Complexes (Greece). Geosciences, 8, 251. https://doi.org/10.3390/geosciences8070251.
  • Goodman, R.E. 1993. Engineering geology: rock in engineering construction. Wiley, New York. 412 pp.
  • Gurocak, Z., & Kılıç, R. (2005). Effect of weathering on the geomechanical properties of the Miocene basalts in Malatya, Eastern Turkey. Bulletin of Engineering Geology and the Environment, 64, 373–381. https://doi.org/10.1007/s10064-005-0005-2.
  • Gültekin, Z., & Dağ, S. (2023). Investigation of changes in geomechanical properties of sandstones under different saturation and anisotropy conditions example from Gümüşhane NE Türkiye. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 616–631. https://doi.org/10.17714/gumusfenbil.1274987.
  • ISRM. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay, Hudson (Eds.), Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics. ISRM Turkish National Group, (pp. 628). Ankara, Turkey.
  • Juneja, A., & Endait, M. (2017). Laboratory measurement of elastic waves in basalt rock. Measurement, 103, 217-226. https://doi.org/10.1016/j.measurement.2017.02.040.
  • Kahraman, S., Gunaydin, O., & Fener, M. (2005). The effect of porosity on the relation between uniaxial compressive strength and point load index. International Journal of Rock Mechanics and Mining Sciences, 42(4), 584–589. https://doi.org/10.1016/j.ijrmms.2005.02.004. Karaman K. & Kesimal A. (2015). Evaluation of the influence of porosity on the engineering properties of volcanic rocks from the Eastern Black Sea Region: NE Turkey. Arabian Journal of Geosciences, 8, 557–564. https://doi.org/10.1007/s12517-013-1217-6.
  • Karaman, K., & Bakhytzhan, A. (2020). Prediction of concrete strength from rock properties at the preliminary design stage. Geomechanics and Engineering, 23, 115-125. https://doi.org/10.12989/gae.2020.23.2.115.
  • Kaya, A., & Karaman, K. (2015). Utilizing the strength conversion factor in estimation of the uniaxial compressive strength from the point load index. Bulletin of Engineering Geology and the Environment, 75(1), 341–357. https://doi.org/10.1007/s10064-015-0721-1.
  • Kılıç¸ A., & Teymen, A. (2008). Determination of mechanical properties of rocks using simple methods. Bulletin of Engineering Geology and the Environment, 67, 237–244. https://doi.org/10.1007/s10064-008-0128-3.
  • Liu, Z., Zhang, C., Zhang, C., Wang, H., Zhou, H., & Zhou, B. (2022). Effects of amygdale heterogeneity and sample size on the mechanical properties of basalt. Journal of Rock Mechanics and Geotechnical Engineering, 14(1), 93-107. https://doi.org/10.1016/j.jrmge.2021.10.001.
  • Murthy, P.S.K., Gupta, S., Kumar, D., & Dixit, M. (2021).The effect of porosity on engineering properties of vesicular amygdaloidal basalts. International Journal of Engineering Applied Sciences and Technology, 5(11), 134-137. https://doi.org/10.33564/IJEAST.2021.v05i11.019.
  • Sharo, A.A. & Al-Tawaha, M.S. (2019). Prediction of engineering properties of basaltic rocks in Jordan. International Journal of Civil Engineering and Technology (IJCIET), 10(1), 1731-1739. https://doi.org/10.1007/s10706-018-0551-6.
  • Tarawneh, K., Amaireh, M., Abdelhadi, N., Titi, A., & Dweirj, M. (2022). Characterization of the physical and mechanical properties of the Harrat Ash Shaam Basalt (HASB)/Northeast Jordan. Open Journal of Civil Engineering, 12, 463-475. https://doi.org/10.4236/ojce.2022.124026.
  • Tuğrul, A., & Zarif I.H. (1999). Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from turkey. Engineering Geology, 51, 303–317. https://doi.org/10.1016/S0013-7952(98)00071-4.
  • Tüysüz, N., & Yaylalı, G. (2005). Jeoistatistik kavramlar ve bilgisayarlı uygulamalar, 1. Baskı, K.T.Ü. Yayınları, Trabzon.
  • Ulusay, R., Tureli, K., & Ider, M.H. (1994). Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Engineering Geology, 38, 135–157.
  • Youssouf Mahamat Tahir, O., & Karaman, K. (2021). Dönüşüm faktörünü kullanarak nokta yükü dayanım indeksinden bazaltların tek eksenli basınç dayanımının tahmini. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1242-1249. https://doi.org/10.17714/gumusfenbil.937826.
  • Yücel, C., Arslan, M., Temizel, İ., & Abdioğlu, E. (2014). Volcanic facies and mineral chemistry of Tertiary volcanics in the northern part of the Eastern Pontides, northeast Turkey: implications for pre-eruptive crystallization conditions and magma chamber processes. Mineralogy and Petrology, 108, 439–467. https://doi.org/10.1007/s00710-013-0306-2.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Rock Mechanics and Fortification, Rock Mechanics, Mineralogy- Petrography
Journal Section Articles
Authors

Kadir Karaman 0000-0002-3831-4465

Hasan Kolaylı 0000-0003-3629-7371

Yaşar Çakır 0000-0002-0580-4599

Erdoğan Timurkaynak 0000-0001-9311-539X

Publication Date March 15, 2024
Submission Date August 3, 2023
Acceptance Date November 13, 2023
Published in Issue Year 2024

Cite

APA Karaman, K., Kolaylı, H., Çakır, Y., Timurkaynak, E. (2024). Bazaltlarda olivin serpantinleşmesinin tek eksenli basınç dayanımına ve görünür gözenekliliğe etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(1), 197-207. https://doi.org/10.17714/gumusfenbil.1337324