Research Article
BibTex RIS Cite

Kızıldağ (Hatay) ofiyolitine ait manto peridotitlerinin petrografisi, tüm-kayaç jeokimyası ve erigiyik-kayaç etkileşim izleri

Year 2024, , 379 - 393, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1405095

Abstract

Kızıldağ ofiyoliti (G-Türkiye) Neotetis okyanusunun güney kolunda oluşmuş okyanusal litosfer kalıntısı kayaçlar topluluğu olarak bilinmektedir. Ofiyolit istifi tabandan tavana doğru manto peridotitleri, ultramafik-mafik kümülatlar, izotrop gabrolar, levha dayk kompleksi ve yastık şekilli bazaltik örtü kayaçları şeklindedir. Manto peridotitleri harzburjit bileşimindedir ve değişen oranlarda serpantinleşme gözlenmektedir. Manto peridotitlerinin tüm kayaç ana oksit-iz element ve Lantanit Grubu Element (LGE) içerikleri harzburjitlerin değişen derecelerde kısmi ergime kalıntısı kayaçlar olduğuna işaret etmektedir. Harzburjitler düşük tüm-kayaç Al ve Ca kompozisyonlarına sahiptir ve SSZ peridotitlerin tüketilmiş karakterini yansıtmaktadır. Tüketilmiş manto harzburjitleri, bazı büyük iyon yarıçaplı elementler (LILE) ve hafif lantanit grubu elementler (HLGE) bakımından zenginleşme gösterdiği tespit edilmiştir ve bu durum yitim sırasında meydana gelen ergiyik manto etkileşimine işaret etmektedir. Harzburjitlerin tüm kayaç MgO içerikleri ile CaO ve Al2O3 içerikleri kıyaslandığında bu kayaçların %20-30 arası kısmi ergime kalıntısı kayaçlar olduğu görülmektedir. Ayrıca kısmi ergime sırasında uyumsuz davrandığı bilinen Ti ve Yb içeriklerindeki zenginleşmeler ergiyik-kayaç etkileşimine işaret etmektedir.

References

  • Aldanmaz, E., Schmidt, M.W., Gourgaud, A. & Meisel, T., (2009). Mid-ocean ridge and suprasubduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: Implications for upper mantle melting processes. Lithos, 113, 691–708.
  • Arai, S., Kadoshima, K. ve Morishita, T., (2006). Widespread Arc-related Melting in The Mantle Section of The Northern oman Ophiolites as Inferred from Detrital Chromian Spinels. Journal of the Geological Society, 163, 869–879.
  • Bağcı, U., (2004). Kızıldağ (Hatay) ve Tekirova (Antalya) Ofiyolitlerinin Jeokimyası ve Petrolojisi, Doktora Tezi, Ç.Ü. Fen Bilimleri Enstitüsü, Adana.
  • Bağcı, U., Parlak, O. ve Höck, V., (2008). Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) ophiolite, Southern Turkey. Turkish Journal of Earth Sciences, 17, 43-71.
  • Bodinier, J.L. ve Godard, M., (2003). Orogenic ophiolitic, and abyssal peridotites. In: Carlson, R.W. (Ed.), Treatise on Geochemistry, vol. 2. Elsevier, Amsterdam, 103–170
  • Chen, C., Su, B., Xiao, Y., Uysal, İ., Lin, W. & Chu, Yang., (2020). Highly siderophile elements and Os isotope constraints on the genesis of peridotites from the Kızıldağ ophiolite, southern Turkey. Lithos, 368-369.
  • Chen, C., Su, B.X., Uysal, I., Avci, E., Zhang, P.F., Xiao, Y. ve He, Y.S., (2015). Iron isotopic constraints on the origin of peridotite and chromitite in the Kızıldağ ophiolite, southern Turkey. Chemical Geology, 417, 115–124.
  • Chen, C., Su, B.X., Xiao, Y., Pang, K.N., Robinson, P.T., Uysal, I., Lin, W., Qin, K.Z., Avci, E. & Kapsiotis, A., (2019). Intermediate chromitite in Kizildag ophiolite (SE Turkey) formed during subduction initiation in Neo-Tethys. Ore Geology Reviews, 104, 88–100.
  • Choi, S.H., Shervais, J.W. & Mukasa, S.B., (2008). Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrubutions to Mineralogy and Petrology, 156-551.
  • Coleman R.G., Ophiolites: Ancient oceanic lithosphere. Springer-Verlag, Berlin, (1977) 229 pp.
  • Dilek, Y. ve Thy, P., Structure and Tectonics of Intermediate-spread Oceanic Crust Drilled at DSDP/ODP Holes 504B and 89A, Costa Rica Rift, in, Cramp, A., MacLeod, C.J., Lee, S.V., Jones, E.W.J. (Eds.), Geological Evolution of Ocean Basins, Results from The Ocean Drilling Program. Journal of the Geological Society, 131, (1998) 179–197.
  • Dilek, Y. & Furnes, H., Shallo, M., (2007). Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research, 11, 453–475.
  • Dilek, Y. & Furnes, H., Shallo, M., (2008). Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100, 174–209.
  • Dilek, Y. & Thy, P., (2009). Island arc tholeiite to boninite melt evolution of the cretaceous Kızıldağ (Turkey) ophiolite: model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos 113, 68–87.
  • Engler, A., Koller, F., Meısel, T. ve Que´me´ Neurd, J., (2002). Evolution of the Archean/Proterozoic crust in the southern Saő Francisco craton near Perdőes, Minas Gerais, Brazil: Petrological and geochemical constraints. Jour. South Amer. Earth Sc., 15, www.unileoben.ac.at/~chemie/Engler.pdf, 709–723.
  • Erendil, M., Petrology and Structure of the Upper Crustal Units of the Kızıldağ Ophiolite. In: Tekeli, O. ve Göncüoğlu, M.C. (eds) Geology of the Taurus Belt, Proceedings, Mineral Research & Exploration Institute, Turkey, Ankara, (1984) 269-284.
  • Flower, M.F.J. & Dilek, Y., (2003). Arc-trench rollback and forearc accretion: 1. A collision-induced mantle flow model for Tethyan ophiolites. In: Dilek, Y., Robinson, P.T. (Eds.), Ophiolites in Earth History. Geological Society of London Special Publication, 218, 21–41.
  • Godard, M., Bosch, D. & Einaudi, F., (2006). A MORB source for low-Ti magmatism in the Semail ophiolite. Chemical Geology, 234: 58–78.
  • Hildenbrand, A., Gillot, P. Y. ve Le Roy, I., (2004). Volcano-tectonic and geochemical evolution of an oceanic intra-plate volcano: Tahiti-Nui (French Polynesia). Earth and Planetary Science Letters, 217(3-4), 349-365.
  • Karaoğlan, F., Parlak, O., Klötzli, U., Thoni, M. ve Koller, F., (2013). U–Pb and Sm–Nd geochronology of the ophiolites from the SE Turkey: implications for the Neotethyan evolution. Geodinamica Acta, 25, 146–161.
  • Kimura, J.I., Gill, J.B., van Keken, P.E., Kawabata, H. ve Skora, S., (2017). Origin of geochemicalmantle components: role of spreading ridges and thermal evolution of mantle. Geochemistry, Geophysics, Geosystems, 18, 697–73.
  • Lin, K.Y., Wang, K.L., Chung, S.L., Bingöl, A.F., Iizuka, Y., & Lee, H.Y., (2020). Tracking the magmatic response to subduction initiation in the forearc mantle wedge: Insights from peridotite geochemistry of the Guleman and Kızıldağ ophiolites, Southeastern Turkey. Lithos, 376.
  • Lippard, S.J., Shelton, A.W. & Gass, (1986). I.G., The Ophiolite of Northern Oman, Geol. Soc. Mem., 11, 187.
  • Moiseev, A.V., Sokolov, S.D., ve Hyasaka, Y., (2011). Composition and geodynamic setting of the volcanic rocks from ophiolites of the Ust’-Belaya Mountains, Chukchi Peninsula. In Doklady Earth Sciences (Vol. 437, No. 1, pp. 326-330). SP MAIK Nauka/Interperiodica.
  • Niu, Y., (2004). Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12), 2423-2458.
  • Okay, A. I., & Şahintürk, Ö. (1997). Geology of the Eastern Pontides. In Robinson, A. G. (Ed.), Regional and petro- leum geology of the Black Sea and surrounding region (pp. 291311). American Association of Petroleum Geologists (AAPG) Memoir No. 68.
  • Okay, A.I. (1989). Tectonic units and sutures in the Pontides, northern Turkey. In A. M. C. Şengör (Ed.), Tectonic evolution of the Tethyan Region (pp. 109-116). NATO Advanced ASI Series. Dordrecht: Kluwer Academic.
  • O'Neill, H.S.C. (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a Geobarometer. Contributions to Mineralogy and Petrology, 77, 185–194.
  • Ottley, C.J., Pearson, D.G. ve Irvine, G.J., A Routine Method for The Dissolution of Geological Samples for The Analysis of REE and Trace Elements via ICP –MS, in Plasma Source Mass Spectrometry, Applications and Emerging Technologies, (J.G. Holland, S.D. Taner, Eds.), The Royal Society of Chemistry, (2003) 221–230.
  • Palme, H. ve O’Neill, H.S.C., (2003). Cosmochemical estimates of mantle composition. The mantle and core, 1-38.
  • Pamic, J. & Desmons, J., (1989). A complete ophiolite sequence in Rzav area of Zlatibor and Varda ultramafic massifs, the Dinaride Ophiolite zone. Ofioliti 14, 13-32.
  • Parlak, O., Rızaoğlu, T., Bağcı, U., Karaoğlan, F., & Höck, V., (2009). Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics, 473(1-2), 173-187.
  • Robertson, A.H., (2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2), 1-67.
  • Selçuk, H., Etude geologique de la partie meridionale du Hatay (Turquie): PhD dissertation (unpublished), Univ. de Geneve, (1981) 116p.
  • Selçuk, H., Kızıldağ-Keldağ-Hatay Dolayının Jeolojisi ve Jeodinamik Evrimi. Derleme Rapor, MTA, Ankara (1985).
  • Uysal, I., Ersoy, E.Y., Dilek, Y., Escayola, M., Sarıfakıoğlu, E., Saka, S. & Hirata, T., (2015). Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia—Turkey. Gondwana Research, 27(2), 594-611.
  • Uysal, İ., Akmaz, R.M., Saka, S. & Kapsiotis, A., (2016). Coexistence of compositionally heterogeneous chromitites in the Antalya-Isparta ophiolitic suite, SW Turkey: A record of sequential magmatic processes in the sub-arc lithospheric mantle. Lithos, 248, pp. 160-174.
  • Uysal, İ., Şen, A.D., Ersoy, E. Y., Dilek, Y., Saka, S., Zaccarini, F. & Karslı, O., (2014). Geochemical make-up of oceanic peridotites from NW Turkey and the multi-stage melting history of the Tethyan upper mantle. Mineralogy and Petrology, 108(1), 49-69.
  • Yılmaz, Y., (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105(2), 251-271.
  • Zhou, M.F., Robinson, P.T., Malpas, J., Edwards, S.J. & Qi, L., (2005). REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology, 46(3), 615-639.

Whole-rock and petrological properties of mantle peridotites from Kızıldağ (Hatay) ophiolite, tracing melt-rock interaction process

Year 2024, , 379 - 393, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1405095

Abstract

Kızıldağ ophiolite (G-Turkey) is known as oceanic lithosphere remnant rocks formed in the southern arm of the Neotethys ocean. The ophiolite sequence, from bottom to top, mantle peridotites, ultramafic-mafic cumulates, isotropic gabbros, sheet dyke complex and pillow-shaped basaltic cover rocks. Mantle peridotites are in harzburgite composition and varying degrees of serpentinization are observed. Whole-rock major oxide-trace element Lanthanide Group Element (LGE) contents of mantle peridotites indicate that harzburgites are residues after partially molten layers of upper mantle. Harzburgites have low whole-rock Al and Ca compositions and reflect the depleted character of SSZ peridotites. Depleted mantle harzburgites have been found to be enriched in some large ionic radius elements (LILE) and light rare earth elements (LREE), indicating the melt-mantle interaction occurring during subduction. When whole rock MgO contents and CaO and Al2O3 contents of harzburgites are compared, it is seen that these rocks are partial melt residue rocks of 20-30% additionally Ti and Yb contents, which are known to behave incompatibly during partial melting, indicate melt-rock interaction.

References

  • Aldanmaz, E., Schmidt, M.W., Gourgaud, A. & Meisel, T., (2009). Mid-ocean ridge and suprasubduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: Implications for upper mantle melting processes. Lithos, 113, 691–708.
  • Arai, S., Kadoshima, K. ve Morishita, T., (2006). Widespread Arc-related Melting in The Mantle Section of The Northern oman Ophiolites as Inferred from Detrital Chromian Spinels. Journal of the Geological Society, 163, 869–879.
  • Bağcı, U., (2004). Kızıldağ (Hatay) ve Tekirova (Antalya) Ofiyolitlerinin Jeokimyası ve Petrolojisi, Doktora Tezi, Ç.Ü. Fen Bilimleri Enstitüsü, Adana.
  • Bağcı, U., Parlak, O. ve Höck, V., (2008). Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) ophiolite, Southern Turkey. Turkish Journal of Earth Sciences, 17, 43-71.
  • Bodinier, J.L. ve Godard, M., (2003). Orogenic ophiolitic, and abyssal peridotites. In: Carlson, R.W. (Ed.), Treatise on Geochemistry, vol. 2. Elsevier, Amsterdam, 103–170
  • Chen, C., Su, B., Xiao, Y., Uysal, İ., Lin, W. & Chu, Yang., (2020). Highly siderophile elements and Os isotope constraints on the genesis of peridotites from the Kızıldağ ophiolite, southern Turkey. Lithos, 368-369.
  • Chen, C., Su, B.X., Uysal, I., Avci, E., Zhang, P.F., Xiao, Y. ve He, Y.S., (2015). Iron isotopic constraints on the origin of peridotite and chromitite in the Kızıldağ ophiolite, southern Turkey. Chemical Geology, 417, 115–124.
  • Chen, C., Su, B.X., Xiao, Y., Pang, K.N., Robinson, P.T., Uysal, I., Lin, W., Qin, K.Z., Avci, E. & Kapsiotis, A., (2019). Intermediate chromitite in Kizildag ophiolite (SE Turkey) formed during subduction initiation in Neo-Tethys. Ore Geology Reviews, 104, 88–100.
  • Choi, S.H., Shervais, J.W. & Mukasa, S.B., (2008). Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrubutions to Mineralogy and Petrology, 156-551.
  • Coleman R.G., Ophiolites: Ancient oceanic lithosphere. Springer-Verlag, Berlin, (1977) 229 pp.
  • Dilek, Y. ve Thy, P., Structure and Tectonics of Intermediate-spread Oceanic Crust Drilled at DSDP/ODP Holes 504B and 89A, Costa Rica Rift, in, Cramp, A., MacLeod, C.J., Lee, S.V., Jones, E.W.J. (Eds.), Geological Evolution of Ocean Basins, Results from The Ocean Drilling Program. Journal of the Geological Society, 131, (1998) 179–197.
  • Dilek, Y. & Furnes, H., Shallo, M., (2007). Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research, 11, 453–475.
  • Dilek, Y. & Furnes, H., Shallo, M., (2008). Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100, 174–209.
  • Dilek, Y. & Thy, P., (2009). Island arc tholeiite to boninite melt evolution of the cretaceous Kızıldağ (Turkey) ophiolite: model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos 113, 68–87.
  • Engler, A., Koller, F., Meısel, T. ve Que´me´ Neurd, J., (2002). Evolution of the Archean/Proterozoic crust in the southern Saő Francisco craton near Perdőes, Minas Gerais, Brazil: Petrological and geochemical constraints. Jour. South Amer. Earth Sc., 15, www.unileoben.ac.at/~chemie/Engler.pdf, 709–723.
  • Erendil, M., Petrology and Structure of the Upper Crustal Units of the Kızıldağ Ophiolite. In: Tekeli, O. ve Göncüoğlu, M.C. (eds) Geology of the Taurus Belt, Proceedings, Mineral Research & Exploration Institute, Turkey, Ankara, (1984) 269-284.
  • Flower, M.F.J. & Dilek, Y., (2003). Arc-trench rollback and forearc accretion: 1. A collision-induced mantle flow model for Tethyan ophiolites. In: Dilek, Y., Robinson, P.T. (Eds.), Ophiolites in Earth History. Geological Society of London Special Publication, 218, 21–41.
  • Godard, M., Bosch, D. & Einaudi, F., (2006). A MORB source for low-Ti magmatism in the Semail ophiolite. Chemical Geology, 234: 58–78.
  • Hildenbrand, A., Gillot, P. Y. ve Le Roy, I., (2004). Volcano-tectonic and geochemical evolution of an oceanic intra-plate volcano: Tahiti-Nui (French Polynesia). Earth and Planetary Science Letters, 217(3-4), 349-365.
  • Karaoğlan, F., Parlak, O., Klötzli, U., Thoni, M. ve Koller, F., (2013). U–Pb and Sm–Nd geochronology of the ophiolites from the SE Turkey: implications for the Neotethyan evolution. Geodinamica Acta, 25, 146–161.
  • Kimura, J.I., Gill, J.B., van Keken, P.E., Kawabata, H. ve Skora, S., (2017). Origin of geochemicalmantle components: role of spreading ridges and thermal evolution of mantle. Geochemistry, Geophysics, Geosystems, 18, 697–73.
  • Lin, K.Y., Wang, K.L., Chung, S.L., Bingöl, A.F., Iizuka, Y., & Lee, H.Y., (2020). Tracking the magmatic response to subduction initiation in the forearc mantle wedge: Insights from peridotite geochemistry of the Guleman and Kızıldağ ophiolites, Southeastern Turkey. Lithos, 376.
  • Lippard, S.J., Shelton, A.W. & Gass, (1986). I.G., The Ophiolite of Northern Oman, Geol. Soc. Mem., 11, 187.
  • Moiseev, A.V., Sokolov, S.D., ve Hyasaka, Y., (2011). Composition and geodynamic setting of the volcanic rocks from ophiolites of the Ust’-Belaya Mountains, Chukchi Peninsula. In Doklady Earth Sciences (Vol. 437, No. 1, pp. 326-330). SP MAIK Nauka/Interperiodica.
  • Niu, Y., (2004). Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12), 2423-2458.
  • Okay, A. I., & Şahintürk, Ö. (1997). Geology of the Eastern Pontides. In Robinson, A. G. (Ed.), Regional and petro- leum geology of the Black Sea and surrounding region (pp. 291311). American Association of Petroleum Geologists (AAPG) Memoir No. 68.
  • Okay, A.I. (1989). Tectonic units and sutures in the Pontides, northern Turkey. In A. M. C. Şengör (Ed.), Tectonic evolution of the Tethyan Region (pp. 109-116). NATO Advanced ASI Series. Dordrecht: Kluwer Academic.
  • O'Neill, H.S.C. (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a Geobarometer. Contributions to Mineralogy and Petrology, 77, 185–194.
  • Ottley, C.J., Pearson, D.G. ve Irvine, G.J., A Routine Method for The Dissolution of Geological Samples for The Analysis of REE and Trace Elements via ICP –MS, in Plasma Source Mass Spectrometry, Applications and Emerging Technologies, (J.G. Holland, S.D. Taner, Eds.), The Royal Society of Chemistry, (2003) 221–230.
  • Palme, H. ve O’Neill, H.S.C., (2003). Cosmochemical estimates of mantle composition. The mantle and core, 1-38.
  • Pamic, J. & Desmons, J., (1989). A complete ophiolite sequence in Rzav area of Zlatibor and Varda ultramafic massifs, the Dinaride Ophiolite zone. Ofioliti 14, 13-32.
  • Parlak, O., Rızaoğlu, T., Bağcı, U., Karaoğlan, F., & Höck, V., (2009). Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics, 473(1-2), 173-187.
  • Robertson, A.H., (2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2), 1-67.
  • Selçuk, H., Etude geologique de la partie meridionale du Hatay (Turquie): PhD dissertation (unpublished), Univ. de Geneve, (1981) 116p.
  • Selçuk, H., Kızıldağ-Keldağ-Hatay Dolayının Jeolojisi ve Jeodinamik Evrimi. Derleme Rapor, MTA, Ankara (1985).
  • Uysal, I., Ersoy, E.Y., Dilek, Y., Escayola, M., Sarıfakıoğlu, E., Saka, S. & Hirata, T., (2015). Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia—Turkey. Gondwana Research, 27(2), 594-611.
  • Uysal, İ., Akmaz, R.M., Saka, S. & Kapsiotis, A., (2016). Coexistence of compositionally heterogeneous chromitites in the Antalya-Isparta ophiolitic suite, SW Turkey: A record of sequential magmatic processes in the sub-arc lithospheric mantle. Lithos, 248, pp. 160-174.
  • Uysal, İ., Şen, A.D., Ersoy, E. Y., Dilek, Y., Saka, S., Zaccarini, F. & Karslı, O., (2014). Geochemical make-up of oceanic peridotites from NW Turkey and the multi-stage melting history of the Tethyan upper mantle. Mineralogy and Petrology, 108(1), 49-69.
  • Yılmaz, Y., (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105(2), 251-271.
  • Zhou, M.F., Robinson, P.T., Malpas, J., Edwards, S.J. & Qi, L., (2005). REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology, 46(3), 615-639.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Mineralogy- Petrography
Journal Section Articles
Authors

Ahmet Dündar Şen 0000-0001-6150-5852

Publication Date June 15, 2024
Submission Date December 14, 2023
Acceptance Date January 3, 2024
Published in Issue Year 2024

Cite

APA Şen, A. D. (2024). Kızıldağ (Hatay) ofiyolitine ait manto peridotitlerinin petrografisi, tüm-kayaç jeokimyası ve erigiyik-kayaç etkileşim izleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(2), 379-393. https://doi.org/10.17714/gumusfenbil.1405095