Research Article
BibTex RIS Cite

Numerical analysis of a mini wind tunnel and experimental investigation of the mini wind tunnel utilizing a portable, three-axis load/balance measurement system

Year 2024, , 623 - 638, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1418085

Abstract

Investigation of a portable three-axis load/balance measurement system in a mini wind tunnel is the main subject of study. Firstly, a mini wind tunnel is designed, numerically analyzed and constructed. Then, measurements of lift and drag forces on a selected airfoil are carried out using data from the measurement system located in the test area. Tri-axis load/balance measurement system developed has a total of three load cells, one for drag and two for lift. Sensor data acquisition codes are written using Ardunio and force measurement experiments are performed at various angles of attack on the NACA2412 airfoil at Reynolds number of 60000, for the maximum flow rate of 5200 m3/h through fan controller in the constructed mini wind tunnel. After completing the mesh independence test, numerical studies are conducted in ANSYS Fluent for the same range of angles of attack using three different turbulence models. Realizable k-ε turbulence model gives more realistic high stall angles of attack than other turbulence models and similar to experimental results. In addition to the current experimental study, four other literature studies in similar Reynolds number ranges are used as reference cases. A visual study of the flow around the airfoil is given as velocity contours in addition to the numerical comparisons. From the numerical and experimental results, it is concluded that the NACA2412 airfoil profile wings are more efficient for moderate to high Reynolds numbers and the constructed load/balance measurement system and mini wind tunnel are highly successful in terms of lift and drag measurements.

Ethical Statement

The authors of this article declare that the materials and methods used in this study do not require ethics committee approval and/or legal-special permission.

Supporting Institution

This work is financially supported by the Scientific Research Project Fund of GAZİANTEP ÜNİVERSİTESİ under the project number HUBF.ÖKAP.22.01.

Project Number

HUBF.ÖKAP.22.01

Thanks

The 3D printing and laser cutting processes are completed at the IOM FabLab Application Center, Gaziantep Office.

References

  • Abbott, I. H., Von Doenhoff, A. E., & Stivers Jr, L. (1945). Summary of airfoil data (No. NACA-TR-824). https://ntrs.nasa.gov/api/citations/19930090976/downloads/19930090976.pdf
  • ANSYS Fluent Theory Guide (2022, July). https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_Theory_Guide.pdf
  • ANSYS Fluent User’s Guide (2022, July). https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_Users_Guide.pdf
  • Ate AEROTECH - 3 Component External Wind Tunnel Balances. (2024, January 11). http://www.ate-aerotech.co.uk/capabilities/aerodynamic-test-equipment/external-balances/3-component-external-wind-tunnel-balances
  • Barlow, J. B., Rae, W. H., & Pope, A. (1999). Low-speed wind tunnel testing (3rd ed.). John Wiley & Sons.
  • Fernandes, J. T. (2018). Design of a wind tunnel force balance [Master’s thesis, Technical University of Lisbon].
  • Koca, M. S. (2019). Su tünellerinde model hareket kontrolü ve senkron aerodinamik kuvvet ölçüm sistemi tasarımı [Master’s thesis, Başkent University Institute of Science].
  • Kumar, R., Srivatsa, B. R., & Subramanian, B. (2021). Calibration design evaluations through computational analysis and investigation of a six-component wind tunnel balance. ISSS Journal of Micro and Smart Systems, 10, 7-31.
  • Portman, V., Sandler, B. Z., Chapsky, V., & Zilberman, I. (2009). A 6-DOF isotropic measuring system for force and torque components of drag for use in wind tunnels: Innovative design. International Journal of Mechanics and Materials in Design, 5, 337-357. https://doi.org/10.1007/s10999-009-9106-6
  • Randers-Pehrson, N. (1935). Pioneer wind tunnels. Smithsonian Miscellaneous Collections.
  • Samardžić, M., Anastasijević, Z., Marinkovski, D., Ćurčić, D., & Isaković, J. (2014). External six-component strain gauge balance for low speed wind tunnels. Scientific Technical Review, 64(3), 40-46. https://doi.org/10.1007/s10999-009-9106-6
  • Stewart, D. (1965). A Platform with six degrees of freedom. International Journal of Mechanics and Materials in Design Proceedings of the Institute of Mechanical Engineers, 180(1), 371-386. https://doi.org/10.1243/PIME_PROC_1965_180_029_02
  • Tintoré, I. B. (2018). Design of a Three-axis Wind Tunnel Force Balance [Bachelor’s thesis, University of Zagreb Faculty of Transport and Traffic Sciences].
  • Tomin, M., Scipioni, M., & Gatti, B. (2020). Design, Construction and Testing of a 3-Component Force Balance for Educational Wind Tunnels in Undergraduate Aerodynamics. Journal of Aviation/Aerospace Education & Research, 29(1), 89-105.
  • Ylilammi, N., Cavalieri, A. V. B., & Soinne, E. (2010). Experimental and computational study of two flapped airfoils at low Reynolds Numbers. 27th Congress of the International Council of the Aeronautical Sciences (ICAS) (pp. 1-9), Nice, France.

Mini rüzgar tünelinin sayısal analizi ve taşınabilir, üç eksenli bir yük/denge ölçüm sistemi kullanılarak mini rüzgar tünelinin deneysel incelenmesi

Year 2024, , 623 - 638, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1418085

Abstract

Mini bir rüzgâr tünelinde taşınabilir üç eksenli yük/denge ölçüm sisteminin incelenmesi çalışmanın ana konusudur. İlk olarak, bir mini rüzgar tüneli tasarlanmış, sayısal olarak analiz edilmiş ve inşa edilmiştir. Ardından, test alanında bulunan ölçüm sisteminden elde edilen veriler kullanılarak seçilen bir kanat üzerindeki kaldırma ve sürükleme kuvvetlerinin ölçümleri gerçekleştirilmiştir. Geliştirilen üç eksenli yük/denge ölçüm sistemi, biri sürükleme ve ikisi kaldırma kuvveti için olmak üzere toplam üç yük hücresine sahiptir. Sensör veri toplama kodları Ardunio kullanılarak yazılmış ve inşa edilen mini rüzgar tünelinde NACA2412 kanat profili üzerinde çeşitli hücum açılarında, 60000 Reynolds sayısında, maksimum 5200 m3/h debi için fan kontrolcüsü aracılığıyla kuvvet ölçüm deneyleri gerçekleştirilmiştir. Ağ bağımsızlık testi tamamlandıktan sonra, üç farklı türbülans modeli kullanılarak aynı hücum açısı aralığı için ANSYS Fluent'te sayısal çalışmalar yapılmıştır. Gerçekleştirilebilir k-ε türbülans modeli, deneysel sonuçlara benzer şekilde, diğer türbülans modellerine göre daha gerçekçi yüksek tutunma kaybı (perdövites) hücum açıları vermektedir. Mevcut deneysel çalışmaya ek olarak, benzer Reynolds sayısı aralıklarındaki diğer dört literatür çalışması referans vakalar olarak kullanılmıştır. Sayısal karşılaştırmalara ek olarak, kanat profili etrafındaki akışın görsel bir çalışması da hız konturları olarak verilmiştir. Sayısal ve deneysel sonuçlardan, NACA2412 kanat profilinin orta ve yüksek Reynolds sayıları için daha verimli olduğu ve kurulan yük/denge ölçüm sistemi ve mini rüzgar tünelinin kaldırma ve sürükleme kuvveti ölçümleri açısından oldukça başarılı olduğu sonucuna varılmıştır.

Ethical Statement

Bu makalenin yazarları, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul onayı ve/veya yasal-özel izin gerektirmediğini beyan eder.

Supporting Institution

Bu çalışma GAZİANTEP ÜNİVERSİTESİ Bilimsel Araştırma Projeleri Komisyonu tarafından HUBF.ÖKAP.22.01 numaralı proje kapsamında desteklenmiştir.

Project Number

HUBF.ÖKAP.22.01

Thanks

3B baskı ve lazer kesim işlemleri IOM FabLab Uygulama Merkezi, Gaziantep Ofisi'nde tamamlanmıştır.

References

  • Abbott, I. H., Von Doenhoff, A. E., & Stivers Jr, L. (1945). Summary of airfoil data (No. NACA-TR-824). https://ntrs.nasa.gov/api/citations/19930090976/downloads/19930090976.pdf
  • ANSYS Fluent Theory Guide (2022, July). https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_Theory_Guide.pdf
  • ANSYS Fluent User’s Guide (2022, July). https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_Users_Guide.pdf
  • Ate AEROTECH - 3 Component External Wind Tunnel Balances. (2024, January 11). http://www.ate-aerotech.co.uk/capabilities/aerodynamic-test-equipment/external-balances/3-component-external-wind-tunnel-balances
  • Barlow, J. B., Rae, W. H., & Pope, A. (1999). Low-speed wind tunnel testing (3rd ed.). John Wiley & Sons.
  • Fernandes, J. T. (2018). Design of a wind tunnel force balance [Master’s thesis, Technical University of Lisbon].
  • Koca, M. S. (2019). Su tünellerinde model hareket kontrolü ve senkron aerodinamik kuvvet ölçüm sistemi tasarımı [Master’s thesis, Başkent University Institute of Science].
  • Kumar, R., Srivatsa, B. R., & Subramanian, B. (2021). Calibration design evaluations through computational analysis and investigation of a six-component wind tunnel balance. ISSS Journal of Micro and Smart Systems, 10, 7-31.
  • Portman, V., Sandler, B. Z., Chapsky, V., & Zilberman, I. (2009). A 6-DOF isotropic measuring system for force and torque components of drag for use in wind tunnels: Innovative design. International Journal of Mechanics and Materials in Design, 5, 337-357. https://doi.org/10.1007/s10999-009-9106-6
  • Randers-Pehrson, N. (1935). Pioneer wind tunnels. Smithsonian Miscellaneous Collections.
  • Samardžić, M., Anastasijević, Z., Marinkovski, D., Ćurčić, D., & Isaković, J. (2014). External six-component strain gauge balance for low speed wind tunnels. Scientific Technical Review, 64(3), 40-46. https://doi.org/10.1007/s10999-009-9106-6
  • Stewart, D. (1965). A Platform with six degrees of freedom. International Journal of Mechanics and Materials in Design Proceedings of the Institute of Mechanical Engineers, 180(1), 371-386. https://doi.org/10.1243/PIME_PROC_1965_180_029_02
  • Tintoré, I. B. (2018). Design of a Three-axis Wind Tunnel Force Balance [Bachelor’s thesis, University of Zagreb Faculty of Transport and Traffic Sciences].
  • Tomin, M., Scipioni, M., & Gatti, B. (2020). Design, Construction and Testing of a 3-Component Force Balance for Educational Wind Tunnels in Undergraduate Aerodynamics. Journal of Aviation/Aerospace Education & Research, 29(1), 89-105.
  • Ylilammi, N., Cavalieri, A. V. B., & Soinne, E. (2010). Experimental and computational study of two flapped airfoils at low Reynolds Numbers. 27th Congress of the International Council of the Aeronautical Sciences (ICAS) (pp. 1-9), Nice, France.
There are 15 citations in total.

Details

Primary Language English
Subjects Aerodynamics (Excl. Hypersonic Aerodynamics), Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Articles
Authors

Emre Kara 0000-0002-9282-5805

Kübra Öztürk 0009-0002-5622-5762

Project Number HUBF.ÖKAP.22.01
Publication Date June 15, 2024
Submission Date January 11, 2024
Acceptance Date May 2, 2024
Published in Issue Year 2024

Cite

APA Kara, E., & Öztürk, K. (2024). Numerical analysis of a mini wind tunnel and experimental investigation of the mini wind tunnel utilizing a portable, three-axis load/balance measurement system. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(2), 623-638. https://doi.org/10.17714/gumusfenbil.1418085