Research Article
BibTex RIS Cite

Petrographic and geochemical characteristics of Eocene (?) basic igneous rocks outcropping around Gülümuşağı (Malatya)

Year 2024, , 706 - 720, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1424391

Abstract

Eocene (?) aged magmatic rocks cropping out around Gülümuşağı in Malatya province in the Southeastern Anatolian Orogenic Belt (SAOB) are in the composition of gabbro and diorite and petrographically consist of plagioclase, pyroxene and amphibole minerals. The gabbros and diorites under investigation have low-medium K character, negative trends in Rb, P, Nb and Ti elements, and positive trends in Sr and Ba values in the trace element diagram normalized according to the Primary Mantle. It shows an almost horizontal trend in the trace element variation diagram normalized according to chondrite. The LaN/LuN ratios between light rare earth elements (LREE) and heavy rare earth elements (HREE) in the gabbros and diorites under investigation vary between 1.31 and 1.53 (AS17=0.53, AS20=5.35) and show weak-medium levels of fractionation. Gabbro and diorite-type rocks show positive Eu anomalies, and EuN/Eu* values vary between (1.01-1.46). Gabbro and diorites have relatively low La/Yb (0.63-6.31) and Nb/La (0.42-0.75) ratios, indicating lithospheric mantle/lithospheric-asthenospheric mantle origin. Low Zr/Hf (12.6-39.3) and Nb/Yb (0.31-3.26) ratios suggest that these rocks are formed from a depleted mantle source. The role of fractional crystallization is greater than assimilation in developing the main magma that forms the gabbros and diorites under investigation. In light of all the data, it is thought that the main magma of Eocene (?) aged gabbros and diorites was derived from a source containing spinel representing shallow depths.

Project Number

123Y070

References

  • Abdelfadil, K.M., Gehad, M., Putis, M., & Sami, M. (2022). Mantle source characteristics of late neoproterozoic post-collisional gabbroic intrusion of wadi abu-hadieda from the north arabian nubian shield (Egypt). Journal of African Earth Science, 193 https://doi.org/ 10.1016/j.jafrearsci.2022.104607
  • Adam, J., & Green, T. (2006). Trace element partitioning between mica- and amphibole- bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour, Contributions to Mineralogy and Petrology, 152, 1–17. doi: https://doi.org/10.1007/s00410-006-0085-4
  • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., & Mitchell, J.G. (2000). Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey: Journal of Volcanology and Geothermal Research, 102, 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7
  • Bau, M. (1996). Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 123, 323–333. https://doi.org/10.1007/s004100050159
  • Cox, K.G., Bell, J.D., & Pankhurst, R.J. (1979). The Interpretation of Igneous Rocks. Allen and Unwin, London.
  • Dong, Y., Xiao, L., Zhou, H., Du, J., Zhang, N., Xiang, H., Wang, C., Zhao, Z., & Huang, H. (2010). Volcanism of the nanpu sag in the Bohai Bay Basin, Eastern China: geochemistry, petrogenesis, and implications for tectonic setting. J. Asian Earth Sci. 39,173–191. https://doi.org/ 10.1016/j.jseaes.2010.03.003.
  • Ersoy, E.Y. (2013). PETROMODELER (Petrological Modeler): a Microsoft® Excel© spreadsheet program for modelling melting, mixing, crystallisation and assimilation processes in magmatic systems, Turkish Journal of Earth Sciences, 22, 115–125. https://doi.org/ 10.3906/yer-1104-6
  • Ertürk, M.A., Beyarslan, M., & Sar, A. (2017). In the Case of Maden Complex, Geochemical Constraints on the Origin and Tectonic Implication of Eocene Magmatism in SE Turkey, Journal of Tethys, 5, 240–263.
  • Ertürk, M.A., Beyarslan, M., Chung, S.L., & Lin, T.H. (2018). Eocene magmatism (maden complex) in the Southeast anatolian orogenic belt: magma genesis and tectonic implications, Geoscience Frontiers, 9, 1829-1847. https://doi.org/10.1016/j.gsf.2017.09.008
  • Karaoğlan, F., Parlak, O., Hejl, E., Neubauer, F., & Klötzli, U. (2016). The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): evidence from U-Pb, Ar-Ar and fission track chronology, Gondwana Research, 33, 190-208. https://doi.org/10.1016/j.gr.2015.12.011
  • Karaoğlan, F., Parlak, O., Robertson, A., Thöni, M., Klötzli, U., Koller, F., & Okay, A.İ. (2013). Evidence of Eocene high-temperature/high-pressure metamorphism of ophiolitic rocks and granitoid intrusion related to Neo-Tethyan subduction processes (Doğanşehir area, SE Anatolia), Geological Society, London, Special Publications, 372, 249–272. https://doi.org/10.1144/SP372.21
  • Kinzler, R.J. (1997). Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis, Journal of Geophysical Research: Solid Earth, 102, 853–874. https://doi.org/10.1029/96JB00988
  • McKenzie, D., & O'nions, R.K. (1991). Partial melt distributions from inversion of rare earth element concentrations, Journal of Petrology, 32, 1021–1091. https://doi.org/10.1093/ petrology/32.5.1021
  • MTA, 2002. 1/500.000 Türkiye Jeoloji Haritasi, General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Nurlu, N., Köksal, S., & Kohut, M. (2022). Late Cretaceous volcanic arc magmatism in southeast Anatolian Orogenic Belt: Constraints from whole-rock, mineral chemistry, Sr–Nd isotopes and U–Pb zircon ages of the Baskil Intrusive Complex (Malatya, Turkey), Geological Journal, 57, 3048–3073. https://doi.org/10.1002/gj.4460
  • Okay, A., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. In: Durand, B., Jolivet, L., Horvath, F., Serane, M. (Eds.), The Mediterranean Basins: Tertiary Extension within the Alpine Orogen, Geological Society, London, Special Publications, 156, 475-515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • Palme, H., & O'Neill, H.S.C. (2007). Cosmochemical estimates of mantle composition. In: Treatise on Geochemistry, 2–9, 1–38. https://doi.org/10.1016/B0-08-043751-6/ 02177-0
  • Parlak, O. (2006). Geodynamic significance of granitoid magmatism in the southeast Anatolian orogen: geochemical and geochronogical evidence from Göksun–Afşin (Kahramanmaraş, Turkey) region, International Journal of Earth Sciences, 95, 609-627. https://doi.org/10.1007/s00531-005-0058-2
  • Pearce, J.A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In: Torpe, R.S. (Ed.), Andesites. Wiley, New York, NY, USA, pp. 525–548.
  • Pearce, J.A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
  • Pearce, J.A., & Peate, D.W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343
  • Peccerillo, A., & Taylor, S.R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81. http://doi.org/10.1007/BF00384745
  • Perinçek, D., & Kozlu, H. (1984). Stratigraphy and structural relation of the units in the Afşin-Elbistan-Doğanşehir Region. In International Symposium on the Geology of the Taurus Belt, 1983, Mineral Research and Exploration Institute, Ankara, Edited by O. Tekeli and C. Göncüoğlu, pp. 181–198.
  • Robertson, A.H.F., Parlak, O., & Ustaömer, T. (2012). Overview of the Palaeozoic-Neogene evolution of NeoTethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petroleum Geoscience, 18: 381–404. https://doi:10.1144/ petgeo2011-091.
  • Sun, S.S., & McDonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London, Special Publi. 42, 313–345.
  • Şengör, A.M.C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey — a plate tectonic approach, Tectonophysics, 75, 181–241.
  • Temizel, İ., Arslan, M., Abdioğlu Yazar, E., Aslan, Z., Kaygusuz, A., Baki Eraydın, T. (2022). Zircon U–Pb geochronology and petrology of the tholeiitic gabbro from the Kovanlık (Giresun) area: Constraints for the Late Cretaceous bimodal arc magmatism in the Eastern Pontides Orogenic Belt, NE Turkey. Lithos, 428-429, 106840. https://doi.org/10.1016/j.lithos.2022.106840
  • Wagner, T.P., Donnelly-Nolan, J.M., & Grove, T.L. (1995). Evidence of hydrous differentiation and crystal accumulation in the low-MgO, high-Al2 O3 Lake Basalt from Medicine Lake volcano, California. Contrib. Mineral. Petrol. 121, 201-216. https://doi.org/10.1007/s004100050099
  • Walter, M.J. (1998). Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, Journal of Petrology, 39, 29–60. https://doi.org/10.1093/petroj/39.1.29
  • Yang, W., Niu, H., Shan, Q., Luo, Y., Sun, W., Li, C., Li, N., & Yu, X. (2012). Late Paleozoic calcalkaline to shoshonitic magmatism and its geodynamic implications, Yuximolegai area, western Tianshan, Xinjiang: Gondwana Research, 22, 325–340. doi: https://doi.org/10.1016/j.gr.2011.10.008
  • Yıldırım, E. (2015). Geochemistry, petrography and tectonic significance of the ophiolitic rocks, felsic intrusions and Eocene volcanic rocks of an imbrication zone (Helete area, Southeast Turkey), Journal of African Earth Sciences, 107, 89-107. https://doi.org/10.1016/j.jafrearsci.2015.04.002
  • Yılmaz, Y. (1993). New evidence and model on the evolution of the Southeast Anatolian Orogen, Geological Society of America Bulletin, 105, 251–271. https://doi.org/10.1130/0016-7606(1993)105<0251:NEAMOT>2.3.CO;2
  • Yılmaz, Y. (2019). Southeast Anatolian Orogenic Belt Revisited (Geology and Evolution), Canadian Journal of Earth Sciences, 56, 1163–1180. https://doi.org/10.1139/cjes-2018-0170
  • Yiğitbaş, E. (1989). Engizek Dağı (Kahraman Maraş) dolayındaki tektonik birliklerin petrolojik incelenmesi (Doktora tezi). [Petrological Studies of the tectonic units in the Engizek Mountain, Kahraman Maras¸.] Ph.D. thesis, Istanbul Üniversitesi, 347pp.
  • Zhang, J., Amakawa, H., & Nozaki, Y. (1994). The comparative behaviors of yttrium and lantha nides i n the sea water of the North Pacific. Geophys. Res. Lett. 21, 2677–2680. https://doi.org/10.1029/94GL02404

Gülümuşağı (Malatya) çevresinde yüzeyleyen Eosen (?) yaşlı bazik magmatik kayaçların petrografik ve jeokimyasal özellikleri

Year 2024, , 706 - 720, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1424391

Abstract

Güneydoğu Anadolu Orojenik Kuşağı’nda (GAOK) Malatya ili Gülümuşağı çevresinde yüzeyleyen Eosen (?) yaşlı magmatik kayaçlar gabro ve diyorit bileşiminde olup petrografik olarak plajiyoklaz, piroksen ve amfibol minerallerinden oluşmaktadır. İnceleme konusu gabro ve diyoritler düşük-orta K karakterine sahip olup ilksel mantoya göre normalize edilmiş iz element diyagramında Rb, P, Nb ve Ti elementlerinde negatif gidişler, Sr ve Ba değerlerinde pozitif yönsemelere sahiptir. Kondrite göre normalize edilmiş iz element değişim diyagramında yataya yakın bir gidiş göstermektedir. İnceleme konusu gabro ve diyoritler hafif nadir toprak elementleri (HNTE) ve ağır nadir toprak elementleri (ANTE) arasında LaN/LuN oranları 1.31 ile 1.53 arasında değişmekte (AS17=0.53, AS20=5.35) olup zayıf-orta seviyelerde fraksiyonlaşma göstermektedir. Gabro ve diyorit türü kayaçlar pozitif Eu anomalileri göstermekte olup, EuN/Eu* değerleri (1.01-1.46) aralığında değişmektedir. Gabro ve diyoritler kısmen düşük La/Yb (0.63-6.31) ve Nb/La (0.42-0.75) oranlarına sahip olup litosferik manto/litosferik-astenosferik manto kökenine işaret etmektedir. Düşük Zr/Hf (12.6-39.3) ve Nb/Yb (0.31-3.26) oranları bu kayaçların tüketilmiş bir manto kaynağından oluştuğunu göstermektedir. Gabro ve diyoritleri oluşturan ana magmanın gelişiminde fraksiyonel kristallenmenin rolü asimilasyona göre daha fazladır. Tüm veriler ışığında, Eosen (?) yaşlı gabro ve diyoritlerin ana magmasının sığ derinlikleri temsil eden spinel içeren bir kaynaktan türediği düşünülmektedir.

Ethical Statement

Bu makalenin yazarı, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve / veya yasal-özel izin gerektirmediğini beyan etmektedir.

Supporting Institution

TÜBİTAK

Project Number

123Y070

Thanks

Bu çalışma, TÜBİTAK tarafından 123Y070 numaralı proje ile maddi olarak desteklenmiştir. Desteklerinden dolayı TÜBİTAK’a teşekkür ederim. Makalenin inceleme ve değerlendirme aşamasında yapmış oldukları katkılardan dolayı editör ve hakem/hakemlere teşekkür ederim.

References

  • Abdelfadil, K.M., Gehad, M., Putis, M., & Sami, M. (2022). Mantle source characteristics of late neoproterozoic post-collisional gabbroic intrusion of wadi abu-hadieda from the north arabian nubian shield (Egypt). Journal of African Earth Science, 193 https://doi.org/ 10.1016/j.jafrearsci.2022.104607
  • Adam, J., & Green, T. (2006). Trace element partitioning between mica- and amphibole- bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour, Contributions to Mineralogy and Petrology, 152, 1–17. doi: https://doi.org/10.1007/s00410-006-0085-4
  • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., & Mitchell, J.G. (2000). Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey: Journal of Volcanology and Geothermal Research, 102, 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7
  • Bau, M. (1996). Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 123, 323–333. https://doi.org/10.1007/s004100050159
  • Cox, K.G., Bell, J.D., & Pankhurst, R.J. (1979). The Interpretation of Igneous Rocks. Allen and Unwin, London.
  • Dong, Y., Xiao, L., Zhou, H., Du, J., Zhang, N., Xiang, H., Wang, C., Zhao, Z., & Huang, H. (2010). Volcanism of the nanpu sag in the Bohai Bay Basin, Eastern China: geochemistry, petrogenesis, and implications for tectonic setting. J. Asian Earth Sci. 39,173–191. https://doi.org/ 10.1016/j.jseaes.2010.03.003.
  • Ersoy, E.Y. (2013). PETROMODELER (Petrological Modeler): a Microsoft® Excel© spreadsheet program for modelling melting, mixing, crystallisation and assimilation processes in magmatic systems, Turkish Journal of Earth Sciences, 22, 115–125. https://doi.org/ 10.3906/yer-1104-6
  • Ertürk, M.A., Beyarslan, M., & Sar, A. (2017). In the Case of Maden Complex, Geochemical Constraints on the Origin and Tectonic Implication of Eocene Magmatism in SE Turkey, Journal of Tethys, 5, 240–263.
  • Ertürk, M.A., Beyarslan, M., Chung, S.L., & Lin, T.H. (2018). Eocene magmatism (maden complex) in the Southeast anatolian orogenic belt: magma genesis and tectonic implications, Geoscience Frontiers, 9, 1829-1847. https://doi.org/10.1016/j.gsf.2017.09.008
  • Karaoğlan, F., Parlak, O., Hejl, E., Neubauer, F., & Klötzli, U. (2016). The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): evidence from U-Pb, Ar-Ar and fission track chronology, Gondwana Research, 33, 190-208. https://doi.org/10.1016/j.gr.2015.12.011
  • Karaoğlan, F., Parlak, O., Robertson, A., Thöni, M., Klötzli, U., Koller, F., & Okay, A.İ. (2013). Evidence of Eocene high-temperature/high-pressure metamorphism of ophiolitic rocks and granitoid intrusion related to Neo-Tethyan subduction processes (Doğanşehir area, SE Anatolia), Geological Society, London, Special Publications, 372, 249–272. https://doi.org/10.1144/SP372.21
  • Kinzler, R.J. (1997). Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis, Journal of Geophysical Research: Solid Earth, 102, 853–874. https://doi.org/10.1029/96JB00988
  • McKenzie, D., & O'nions, R.K. (1991). Partial melt distributions from inversion of rare earth element concentrations, Journal of Petrology, 32, 1021–1091. https://doi.org/10.1093/ petrology/32.5.1021
  • MTA, 2002. 1/500.000 Türkiye Jeoloji Haritasi, General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Nurlu, N., Köksal, S., & Kohut, M. (2022). Late Cretaceous volcanic arc magmatism in southeast Anatolian Orogenic Belt: Constraints from whole-rock, mineral chemistry, Sr–Nd isotopes and U–Pb zircon ages of the Baskil Intrusive Complex (Malatya, Turkey), Geological Journal, 57, 3048–3073. https://doi.org/10.1002/gj.4460
  • Okay, A., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. In: Durand, B., Jolivet, L., Horvath, F., Serane, M. (Eds.), The Mediterranean Basins: Tertiary Extension within the Alpine Orogen, Geological Society, London, Special Publications, 156, 475-515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • Palme, H., & O'Neill, H.S.C. (2007). Cosmochemical estimates of mantle composition. In: Treatise on Geochemistry, 2–9, 1–38. https://doi.org/10.1016/B0-08-043751-6/ 02177-0
  • Parlak, O. (2006). Geodynamic significance of granitoid magmatism in the southeast Anatolian orogen: geochemical and geochronogical evidence from Göksun–Afşin (Kahramanmaraş, Turkey) region, International Journal of Earth Sciences, 95, 609-627. https://doi.org/10.1007/s00531-005-0058-2
  • Pearce, J.A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In: Torpe, R.S. (Ed.), Andesites. Wiley, New York, NY, USA, pp. 525–548.
  • Pearce, J.A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
  • Pearce, J.A., & Peate, D.W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343
  • Peccerillo, A., & Taylor, S.R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81. http://doi.org/10.1007/BF00384745
  • Perinçek, D., & Kozlu, H. (1984). Stratigraphy and structural relation of the units in the Afşin-Elbistan-Doğanşehir Region. In International Symposium on the Geology of the Taurus Belt, 1983, Mineral Research and Exploration Institute, Ankara, Edited by O. Tekeli and C. Göncüoğlu, pp. 181–198.
  • Robertson, A.H.F., Parlak, O., & Ustaömer, T. (2012). Overview of the Palaeozoic-Neogene evolution of NeoTethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petroleum Geoscience, 18: 381–404. https://doi:10.1144/ petgeo2011-091.
  • Sun, S.S., & McDonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London, Special Publi. 42, 313–345.
  • Şengör, A.M.C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey — a plate tectonic approach, Tectonophysics, 75, 181–241.
  • Temizel, İ., Arslan, M., Abdioğlu Yazar, E., Aslan, Z., Kaygusuz, A., Baki Eraydın, T. (2022). Zircon U–Pb geochronology and petrology of the tholeiitic gabbro from the Kovanlık (Giresun) area: Constraints for the Late Cretaceous bimodal arc magmatism in the Eastern Pontides Orogenic Belt, NE Turkey. Lithos, 428-429, 106840. https://doi.org/10.1016/j.lithos.2022.106840
  • Wagner, T.P., Donnelly-Nolan, J.M., & Grove, T.L. (1995). Evidence of hydrous differentiation and crystal accumulation in the low-MgO, high-Al2 O3 Lake Basalt from Medicine Lake volcano, California. Contrib. Mineral. Petrol. 121, 201-216. https://doi.org/10.1007/s004100050099
  • Walter, M.J. (1998). Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, Journal of Petrology, 39, 29–60. https://doi.org/10.1093/petroj/39.1.29
  • Yang, W., Niu, H., Shan, Q., Luo, Y., Sun, W., Li, C., Li, N., & Yu, X. (2012). Late Paleozoic calcalkaline to shoshonitic magmatism and its geodynamic implications, Yuximolegai area, western Tianshan, Xinjiang: Gondwana Research, 22, 325–340. doi: https://doi.org/10.1016/j.gr.2011.10.008
  • Yıldırım, E. (2015). Geochemistry, petrography and tectonic significance of the ophiolitic rocks, felsic intrusions and Eocene volcanic rocks of an imbrication zone (Helete area, Southeast Turkey), Journal of African Earth Sciences, 107, 89-107. https://doi.org/10.1016/j.jafrearsci.2015.04.002
  • Yılmaz, Y. (1993). New evidence and model on the evolution of the Southeast Anatolian Orogen, Geological Society of America Bulletin, 105, 251–271. https://doi.org/10.1130/0016-7606(1993)105<0251:NEAMOT>2.3.CO;2
  • Yılmaz, Y. (2019). Southeast Anatolian Orogenic Belt Revisited (Geology and Evolution), Canadian Journal of Earth Sciences, 56, 1163–1180. https://doi.org/10.1139/cjes-2018-0170
  • Yiğitbaş, E. (1989). Engizek Dağı (Kahraman Maraş) dolayındaki tektonik birliklerin petrolojik incelenmesi (Doktora tezi). [Petrological Studies of the tectonic units in the Engizek Mountain, Kahraman Maras¸.] Ph.D. thesis, Istanbul Üniversitesi, 347pp.
  • Zhang, J., Amakawa, H., & Nozaki, Y. (1994). The comparative behaviors of yttrium and lantha nides i n the sea water of the North Pacific. Geophys. Res. Lett. 21, 2677–2680. https://doi.org/10.1029/94GL02404
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Mineralogy- Petrography
Journal Section Articles
Authors

Abdullah Sar 0000-0002-9752-7807

Project Number 123Y070
Publication Date September 15, 2024
Submission Date January 23, 2024
Acceptance Date May 5, 2024
Published in Issue Year 2024

Cite

APA Sar, A. (2024). Gülümuşağı (Malatya) çevresinde yüzeyleyen Eosen (?) yaşlı bazik magmatik kayaçların petrografik ve jeokimyasal özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(3), 706-720. https://doi.org/10.17714/gumusfenbil.1424391