Research Article
BibTex RIS Cite

Eskişehir havzasında H/V ve SPAC yöntemleriyle sismik analiz ve derinlik profili çalışmaları

Year 2024, , 883 - 909, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1469624

Abstract

0.1 saniyeden 10 saniyeye kadar olan geniş bir periyot aralığındaki yer hareketlerinin özelliklerini belirlemek, sismik risk değerlendirmesi için kritik önem taşır. Eskişehir ili, yaklaşık bir milyon nüfusu ve gelişmekte olan sanayisi ile, sismik aktivitesi nispeten düşük olmasına rağmen, hızlı yapılaşma sebebiyle yüksek sismik riske sahip bir bölge olarak değerlendirilmektedir. Sismik hızların belirlenmesi ve anakaya derinliğinin tespit edilmesi, yapılaşma ve deprem risklerinin azaltılması için önem taşımaktadır. Yapılan çalışma, bu bilgilerin elde edilmesi amacıyla gerçekleştirilmiştir. Araştırma, 15 farklı noktada, 2017 ve 2018 yıllarında toplamda gerçekleştirilen 7 ve 8 ağ ölçümleri ile desteklenmiştir. Mikrotremor ölçümleri, tek-istasyon Yatay/Düşey spektral oran (H/V) metodu ve ağ ölçmeleri ile SPAC yöntemi kullanılarak, 600-700 m derinliklere kadar Vs yapısının belirlenmesine olanak tanımıştır. Elde edilen veriler, ters çözüm yöntemleri kullanılarak yeraltı derinlik modellemesi oluşturmak için kullanılmıştır. Eskişehir ovasının ortasında, küçük ve büyük ağ/dizilim ölçmeleri ile sığ kısımlar için 100-250 m derinliklerde ve 500-800 m/sn hızlarda mühendislik anakayası tespit edilmiştir. Batıda 1100 m/sn'den doğuda 1800 m/sn'ye kadar değişen S dalgası hızları ve ortalama 600-800 m derinlikte sismolojik anakaya belirlenmiştir. Mikrotremor çalışmaları, batıdan doğuya ve güneyden kuzeye derinleşen ve en derin noktada 800 m'ye ulaşan anakaya derinliklerini göstermektedir. Yüzey dalgaları dispersiyon eğrilerinden elde edilen sismolojik anakayanın Vs hızı 1200-1800 m/sn arasında değişmektedir. Sonuç olarak, Eskişehir havzası ve benzeri alanlarda, detaylı jeolojik ve jeofiziksel analizlerin sismik risk değerlendirmeleri ve tehlike analizleri için büyük öneme sahip olduğu belirlenmiştir. Havza etkilerinin bir başka deyişle yerel zemin etkilerinin, yani yer hareketi büyütmelerinin, sismik hasar analizlerindeki kritik rolü bu çalışma ile bir kez daha vurgulanmıştır.

References

  • Açıkalın, S., & Ocakoğlu, F. (2005). Şubat 1956 Eskişehir Depremi Hangi Faydan Kaynaklanmış Olabilir. Eskişehir Fay Zonu ve İlişkili Sistemlerin Depremselliği Çalıştayı.
  • Aki, K. (1957). Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bulletin of the Earthquake Research Institute, 35, 415-456.
  • Altunel, E., & Barka, A. (1998). Neotectonic activity of Eskisehir fault zone between İnönü and Sultandere. Geological Bulletin of Turkey, 41(2), 41-52.
  • Anderson, J., Bodin, P., Brune, J., Prince, J., Singh, S., Quaas, R., & Onate, M. (1986). Strong ground motion from the Michoacan, Mexico, earthquake. Science, 233(4768), 1043-1049. https://doi.org/10.1126/science.233.4768.1043.
  • Asten, M. (1976). The use of microseisms in geophysical exploration. PhD Thesis, Macquarie University.
  • Bard, P.-Y. (1999). Microtremor measurements: a tool for site effect estimation. The effects of surface geology on seismic motion, 3, 1251-1279.
  • Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549. https://doi.org/10.1126/science.1078551
  • Canitez, N., & Üçer, S. B. (1967). Computer determinations for the fault-plane solutions in and near Anatolia. Tectonophysics, 4(3), 235-244. https://doi.org/10.1016/0040-1951(67)90032-7
  • Capon, J. (1970). Analysis of Rayleigh-wave multipath propagation at LASA. Bulletin of the Seismological Society of America, 60(5), 1701-1731. https://doi.org/10.1785/BSSA0600051701
  • Chevez-Garcia, F., & Bard, P. (1994). Site effects in Mexico City eight years after the September 1985 Michoacan earthquakes. Soil Dynamics and Earthquake Engineering, 13(4), 229-247. https://doi.org/10.1016/0267-7261(94)90028-0
  • Duman, T. Y., Çan, T., Emre, Ö., Kadirioğlu, F. T., Başarır Baştürk, N., Kılıç, T., ... & Kurt, A. İ. (2018). Seismotectonic database of Turkey. Bulletin of Earthquake Engineering, 16, 3277-3316. https://doi.org/10.1007/s10518-016-9965-9
  • Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu, F. (2013). Active fault map of Turkey with explanatory text. General directorate of mineral research and exploration special publication series, 30.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275. https://doi.org/10.1007/s10518-016-0041-2
  • Gok, E., & Polat, O. (2012). An assessment of the seismicity of the Bursa region from a temporary seismic network. Pure and Applied Geophysics, 169, 659-675. https://doi.org/10.1007/s00024-011-0347-6
  • Gözler, M., Cevher, F., Ergül, E., & Asutay, H. J. (1996). Orta Sakarya ve güneyinin jeolojisi. Mineral Research and Exploration (MTA) Raport(9973).
  • Gözler, M. Z., Cevher, F., & Küçükayman, A. (1985). Eskişehir civarınının jeolojisi ve sıcak su kaynakları. Maden Tetkik ve Arama Dergisi, 103(103,104).
  • Güney, Y., Ecevitoğlu, B., Pekkan, E., Avdan, U., Tün, M., Kaplan, O., Mutlu, S., & Akdeniz, E. (2013). Eskişehir yerleşim yerinde, CBS teknikleri kullanılarak geoteknik, yapı ve jeofizik bilgi sisteminin oluşturulması. Anadolu Üniversitesi Bilimsel Araştırma Projesi, Proje(080240).
  • Hatayama, K., Zama, S., Nishi, H., Yamada, M., Hirokawa, Y., & Inoue, R. (2004). Long-period strong ground motion and damage to oil storage tanks due to the 2003 Tokachi-oki earthquake. Journal of the Seismological Society of Japan, 57, 83-103. https://doi.org/10.4294/zisin1948.57.2_83
  • Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6), 1081-1088. https://doi.org/10.1785/0220110096
  • Horike, M. (1985). Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas. Journal of Physics of the Earth, 33(2), 59-96. https://doi.org/10.4294/jpe1952.33.59
  • Koçyiğit, A. (2005). The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodinamica Acta, 18(3-4), 167-208. https://doi.org/10.3166/ga.18.167-208
  • Koketsu, K., Hikima, K., Miyake, H., & Tanaka, H. (2005, 2005). Source process and strong motions of the 2004 Niigata-Chuetsu earthquake (on 15/2/2005). http://taro.eri.u-tokyo.ac.jp/saigai/chuetsu/chuetsu.html
  • Koketsu, K., & Miyake, H. (2008). A seismological overview of long-period ground motion. Journal of Seismology, 12(2), 133-143. https://doi.org/10.1007/s10950-007-9080-0
  • Kudo, K. (1995). Practical estimates of site response state of art report. Proc. 5th International Conf. Seismic Zonation
  • Kudo, K., & Sakaue, M. (1984). Oil-sloshing in the huge tanks at Niigata due to the Nihonkai-Chubu earthquake of 1983. Bulletin of the Earthquake Research Institute-University of Tokyo, 59, 361-382.
  • Kudo, K., Sawada, Y., & Horike, M. (2004). Current studies in Japan on H/V and phase velocity dispersion of microtremors for site characterization. Proc. 13WCEE, Paper(1144).
  • Lachetl, C., & Bard, P.-Y. (1994). Numerical and theoretical investigations on the possibilities and limitations of nakamura's technique. Journal of Physics of the Earth, 42(5), 377-397. https://doi.org/10.4294/jpe1952.42.377
  • Lin, C.-M., Huang, J.-Y., Kuo, C.-H., & Wen, K.-L. (2020). Identification of engineering bedrock in Taiwan based on site amplification and velocity structures of strong-motion stations. EGU General Assembly-Conference Abstracts, 11988. https://doi.org/10.5194/egusphere-egu2020-11988
  • Matsushima, T. (1989). A few remarks of the scheme of observation and analysis in estimating deep geological structures by using long-period microtremors. Geophysical Bulletin of Hokkaido University, 52, 1-10.
  • Midorikawa, S. (1993). Semi-empirical estimation of peak ground acceleration from large earthquakes. Tectonophysics, 218(1-3), 287-295. https://doi.org/10.1016/0040-1951(93)90275-o
  • Miyakoshi, K., Horike, M., & Nakamiya, R. (2013). Long predominant period map and detection of resonant high‐rise buildings in the Osaka basin, western Japan. Bulletin of the Seismological Society of America, 103(1), 247-257. https://doi.org/10.1785/0120110334
  • Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface (0033-9008). (Railway Technical Research Institute, Quarterly Reports, Issue.
  • Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th world conference on earthquake engineering,
  • Nakamura, Y. (2019). What is the Nakamura method? Seismological Research Letters, 90(4), 1437-1443. https://doi.org/10.1785/0220180376
  • Nazarova, S. S., & Uzdin, A. (2020). Setting peak ground accelerations for performance-based design of earthquake-resistant constructions. Seismic instruments, 56, 225-236. https://doi.org/10.3103/s0747923920020085
  • Ocakoglu, F., Acikalin, S., Gokceoglu, C., Nefeslioglu, H., & Sonmez, H. (2007). Back-analysis of the source of the 1956 Eskisehir Earthquake using attenuation equation and damage data. Bulletin of Engineering Geology and the Environment, 66, 353-360. https://doi.org/10.1007/s10064-006-0066-x
  • Ocakoğlu, F., & Açikalin, S. (2010). Field evidences of secondary surface ruptures occurred during the 20 February 1956 Eskişehir earthquake in the NW Anatolia. Journal of earth system science, 119, 841-851. https://doi.org/10.1007/s12040-010-0057-y
  • Ocal, N. (1959). Subat 1956 Eskisehir zelzelesinin makro-ve mikrosismik etudu. ITU Sismoloji Enstitusu Yayini.
  • Okada, H., & Suto, K. (2003). The microtremor survey method. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801740
  • Orhan, A., Seyrek, E., & Tosun, H. (2007). A probabilistic approach for earthquake hazard assessment of the province of Eskişehir, Turkey. Natural Hazards and Earth System Sciences, 7(5), 607-614. https://doi.org/10.5194/nhess-7-607-2007
  • Özsayin, E., & Dirik, K. (2007). Quaternary activity of the Cihanbeyli and Yeniceoba fault zones: İnönü-Eskişehir fault system, Central Anatolia. Turkish Journal of Earth Sciences, 16(4), 471-492.
  • Öztürk, K., Yaltirak, C., & Alpar, B. (2009). The relationship between the tectonic setting of the Lake Iznik basin and the middle strand of the North Anatolian Fault. Turkish Journal of Earth Sciences, 18(2), 209-224. https://doi.org/10.3906/yer-0803-4
  • Öztürk, S., Beker, Y., Sarı, M., & Pehlivan, L. (2021). Estimation of ground types in different districts of Gümüşhane province based on the ambient vibrations H/V measurements. Sigma Journal of Engineering and Natural Sciences, 39(4), 374-391. https://doi.org/10.14744/sigma.2021.00026
  • Pekkan, E., Tun, M., Guney, Y., & Mutlu, S. (2015). Integrated seismic risk analysis using simple weighting method: the case of residential Eskişehir, Turkey. Natural Hazards and Earth System Science, 15(6), 1123-1133. https://doi.org/10.5194/nhess-15-1123-2015
  • Philip, S. E., & Santhi, M. H. (2020). Peak Ground Acceleration analysis using past earthquake data. Journal of Physics: Conference Series
  • Pitarka, A., Al-Amri, A., Pasyanos, M., Rodgers, A., & Mellors, R. (2014). Long-period ground motion in the Arabian Gulf from earthquakes in the Zagros mountains thrust belt. Pure and Applied Geophysics, 172. https://doi.org/10.1007/s00024-014-0858-z
  • Scherbaum, F., Hinzen, K.-G., & Ohrnberger, M. (2003). Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophysical Journal International, 152(3), 597-612. https://doi.org/10.1046/j.1365-246x.2003.01856.x
  • Seyitoğlu, G., Ecevitoğlu, B. G., Kaypak, B., Güney, Y., Tün, M., Esat, K., & Aldaş, G. G. U. (2015). Determining the main strand of the Eskişehir strike-slip fault zone using subsidiary structures and seismicity: a hypothesis tested by seismic reflection studies. Turkish Journal of Earth Sciences, 24, 1-20. https://doi.org/10.3906/yer-1406-5
  • Seyitoğlu, G., Esat, K., Temel, A., & Telsiz, S. (2010). Determination of main strand of a strike-slip fault by using subsidiary structures: Eskişehir Fault Zone as a case study. Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia Conference
  • Snieder, R., & Hagerty, M. (2004). Monitoring change in volcanic interiors using coda wave interferometry: Application to Arenal Volcano, Costa Rica. Geophysical Research Letters, 31(9). https://doi.org/10.1029/2004gl019670
  • Sylvette, B.-C., Cécile, C., Pierre-Yves, B., Fabrice, C., Peter, M., Jozef, K., & Fäh, D. (2006). H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167(2), 827-837. https://doi.org/10.1111/j.1365-246x.2006.03154.x
  • Şaroğlu, F., Emre, Ö., Doğan, A., & Yıldırım, C. (2005). Eskisehir Fay Zonu ve deprem potansiyeli. Eskişehir Fay Zonu ve İlişkili Sistemlerin Depremselliği Calıştayı, Bildiri Özleri Kitabı, 11.
  • Tan, Q., Li, Y., Wei, J., Han, J., & Luo, W. (2015). Influence of seismic ground motions with different frequency on super high-rise building structural seismic response. Journal of Information & Computational Science, 12(5), 1831-1843. https://doi.org/10.12733/jics20105621
  • Tokay, F., & Altunel, E. (2005). Neotectonic activity of Eskişehir fault zone in vicinity of İnönü-Dodurga area. Bulletin of the Mineral Research and Exploration, 130(130), 1-15.
  • Tun, M., Mutlu, S., & Pekkan, E. (2020). EstuNet: a new weak/strong-motion network with Geodatabase for Metropolitan Eskisehir and Bursa, West Anatolia, Turkey. Turk. J. Earthq. Res, 2(2), 193-208. https://doi.org/10.46464/tdad.785892
  • Tün, M. (2013). Mikrobölgeleme Çalışmalarında Yer Tepkisi ve Kayma Dalga Hız (Vs) Yapısının Yorumlanması: Eskişehir Örneği [Doktora, İstanbul Üniversitesi/Fen Bilimleri Enstitüsü].
  • Tün, M., Avdan, U., Kaplan, O., Güney, Y., Çabuk, A., Kaypak, B., Uyar Aldaş, G., Ecevitoğlu, B., Esat, K., & Seyitoğlu, G. (2010). A new look to the Eskişehir Fault. 19th International Geophysical Congress & Exhibition, Ankara, Turkey
  • Tün, M., Pekkan, E., & Mutlu, S. (2022). The depth of alluvial sediments and subsurface profiling along the Eskişehir Basin in Central Turkey using microtremor observations. Bulletin of Engineering Geology and the Environment, 81(5), 169. https://doi.org/10.1007/s10064-022-02676-1
  • Tün, M., Pekkan, E., Özel, O., & Guney, Y. (2016). An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method. Geophysical Journal International, 207(1), 589-607. https://doi.org/10.1093/gji/ggw294
  • Usta, Y. B., & Sayıl, N. (2022). Estimation of site dynamic characteristics using ambient noise measurements in KTU campus, Trabzon, NE Turkey. Arabian Journal of Geosciences, 15(1), 125. https://doi.org/10.1007/s12517-021-08887-2
  • Wapenaar, K., & Fokkema, J. (2006). Green’s function representations for seismic interferometry. Geophysics, 71(4), SI33-SI46. https://doi.org/10.1190/1.2213955
  • Yaltırak, C. (2002). Tectonic evolution of the Marmara Sea and its surroundings. Marine Geology, 190(1-2), 493-529. https://doi.org/10.1016/s0025-3227(02)00360-2
  • Yamanaka, H., Özmen, Ö. T., Chimoto, K., Alkan, M. A., Tün, M., Pekkan, E., Özel, O., Polat, D., & Nurlu, M. (2018). Exploration of S-wave velocity profiles at strong motion stations in Eskisehir, Turkey, using microtremor phase velocity and S-wave amplification. Journal of Seismology, 22, 1127-1137. https://doi.org/10.1007/s10950-018-9756-7
  • Yoshimoto, K., & Takemura, S. (2014). A study on the predominant period of long-period ground motions in the Kanto Basin, Japan. Earth, Planets and Space, 66, 1-7. https://doi.org/10.1186/1880-5981-66-100

Seismic Analysis and Depth Profile Studies Using H/V and SPAC Methods in the Eskişehir Basin

Year 2024, , 883 - 909, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1469624

Abstract

Determining the characteristics of ground motions in a wide period range of 0.1 to 10 seconds is crucial for seismic risk assessment. Eskişehir province, with a population of approximately one million and a developing industry is a high seismic risk region despite its relatively low seismic activity due to rapid urbanization. Determining seismic velocities and bedrock depths is important for reducing urbanization and earthquake risks. This study was conducted to obtain this information. The research, supported by 7 and 8 network measurements performed at 15 different points in total in 2017 and 2018, allowed the determination of the Vs structure up to depths of 600-700 m using microtremor measurements with the single-station Horizontal/Vertical spectral ratio (H/V) method and network measurements with the SPAC (Spatial Autocorrelation) method. The data obtained were used to create a subsurface depth model using inverse solution methods. Engineering bedrock was detected at depths of 100-250 m and velocities of 500-800 m/s for shallow sections using small and large network/array measurements in the middle of the Eskişehir plain. S-wave velocities ranging from 1100 m/s in the west to 1800 m/s in the east and seismological bedrock at an average depth of 600-800 m were determined. Microtremor studies show bedrock depths that deepen from west to east and south to north, reaching 800 m at the deepest point. The Vs velocity of the seismological bedrock obtained from surface wave dispersion curves varies between 1200-1800 m/s. In conclusion, detailed geological and geophysical analyses are of vital importance for seismic risk assessments and hazard analyses in the Eskişehir basin and similar areas. The critical role of local ground effects, i.e., ground motion amplifications, in seismic damage analysis was once again emphasized by this study.

References

  • Açıkalın, S., & Ocakoğlu, F. (2005). Şubat 1956 Eskişehir Depremi Hangi Faydan Kaynaklanmış Olabilir. Eskişehir Fay Zonu ve İlişkili Sistemlerin Depremselliği Çalıştayı.
  • Aki, K. (1957). Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bulletin of the Earthquake Research Institute, 35, 415-456.
  • Altunel, E., & Barka, A. (1998). Neotectonic activity of Eskisehir fault zone between İnönü and Sultandere. Geological Bulletin of Turkey, 41(2), 41-52.
  • Anderson, J., Bodin, P., Brune, J., Prince, J., Singh, S., Quaas, R., & Onate, M. (1986). Strong ground motion from the Michoacan, Mexico, earthquake. Science, 233(4768), 1043-1049. https://doi.org/10.1126/science.233.4768.1043.
  • Asten, M. (1976). The use of microseisms in geophysical exploration. PhD Thesis, Macquarie University.
  • Bard, P.-Y. (1999). Microtremor measurements: a tool for site effect estimation. The effects of surface geology on seismic motion, 3, 1251-1279.
  • Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549. https://doi.org/10.1126/science.1078551
  • Canitez, N., & Üçer, S. B. (1967). Computer determinations for the fault-plane solutions in and near Anatolia. Tectonophysics, 4(3), 235-244. https://doi.org/10.1016/0040-1951(67)90032-7
  • Capon, J. (1970). Analysis of Rayleigh-wave multipath propagation at LASA. Bulletin of the Seismological Society of America, 60(5), 1701-1731. https://doi.org/10.1785/BSSA0600051701
  • Chevez-Garcia, F., & Bard, P. (1994). Site effects in Mexico City eight years after the September 1985 Michoacan earthquakes. Soil Dynamics and Earthquake Engineering, 13(4), 229-247. https://doi.org/10.1016/0267-7261(94)90028-0
  • Duman, T. Y., Çan, T., Emre, Ö., Kadirioğlu, F. T., Başarır Baştürk, N., Kılıç, T., ... & Kurt, A. İ. (2018). Seismotectonic database of Turkey. Bulletin of Earthquake Engineering, 16, 3277-3316. https://doi.org/10.1007/s10518-016-9965-9
  • Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu, F. (2013). Active fault map of Turkey with explanatory text. General directorate of mineral research and exploration special publication series, 30.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275. https://doi.org/10.1007/s10518-016-0041-2
  • Gok, E., & Polat, O. (2012). An assessment of the seismicity of the Bursa region from a temporary seismic network. Pure and Applied Geophysics, 169, 659-675. https://doi.org/10.1007/s00024-011-0347-6
  • Gözler, M., Cevher, F., Ergül, E., & Asutay, H. J. (1996). Orta Sakarya ve güneyinin jeolojisi. Mineral Research and Exploration (MTA) Raport(9973).
  • Gözler, M. Z., Cevher, F., & Küçükayman, A. (1985). Eskişehir civarınının jeolojisi ve sıcak su kaynakları. Maden Tetkik ve Arama Dergisi, 103(103,104).
  • Güney, Y., Ecevitoğlu, B., Pekkan, E., Avdan, U., Tün, M., Kaplan, O., Mutlu, S., & Akdeniz, E. (2013). Eskişehir yerleşim yerinde, CBS teknikleri kullanılarak geoteknik, yapı ve jeofizik bilgi sisteminin oluşturulması. Anadolu Üniversitesi Bilimsel Araştırma Projesi, Proje(080240).
  • Hatayama, K., Zama, S., Nishi, H., Yamada, M., Hirokawa, Y., & Inoue, R. (2004). Long-period strong ground motion and damage to oil storage tanks due to the 2003 Tokachi-oki earthquake. Journal of the Seismological Society of Japan, 57, 83-103. https://doi.org/10.4294/zisin1948.57.2_83
  • Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6), 1081-1088. https://doi.org/10.1785/0220110096
  • Horike, M. (1985). Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas. Journal of Physics of the Earth, 33(2), 59-96. https://doi.org/10.4294/jpe1952.33.59
  • Koçyiğit, A. (2005). The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodinamica Acta, 18(3-4), 167-208. https://doi.org/10.3166/ga.18.167-208
  • Koketsu, K., Hikima, K., Miyake, H., & Tanaka, H. (2005, 2005). Source process and strong motions of the 2004 Niigata-Chuetsu earthquake (on 15/2/2005). http://taro.eri.u-tokyo.ac.jp/saigai/chuetsu/chuetsu.html
  • Koketsu, K., & Miyake, H. (2008). A seismological overview of long-period ground motion. Journal of Seismology, 12(2), 133-143. https://doi.org/10.1007/s10950-007-9080-0
  • Kudo, K. (1995). Practical estimates of site response state of art report. Proc. 5th International Conf. Seismic Zonation
  • Kudo, K., & Sakaue, M. (1984). Oil-sloshing in the huge tanks at Niigata due to the Nihonkai-Chubu earthquake of 1983. Bulletin of the Earthquake Research Institute-University of Tokyo, 59, 361-382.
  • Kudo, K., Sawada, Y., & Horike, M. (2004). Current studies in Japan on H/V and phase velocity dispersion of microtremors for site characterization. Proc. 13WCEE, Paper(1144).
  • Lachetl, C., & Bard, P.-Y. (1994). Numerical and theoretical investigations on the possibilities and limitations of nakamura's technique. Journal of Physics of the Earth, 42(5), 377-397. https://doi.org/10.4294/jpe1952.42.377
  • Lin, C.-M., Huang, J.-Y., Kuo, C.-H., & Wen, K.-L. (2020). Identification of engineering bedrock in Taiwan based on site amplification and velocity structures of strong-motion stations. EGU General Assembly-Conference Abstracts, 11988. https://doi.org/10.5194/egusphere-egu2020-11988
  • Matsushima, T. (1989). A few remarks of the scheme of observation and analysis in estimating deep geological structures by using long-period microtremors. Geophysical Bulletin of Hokkaido University, 52, 1-10.
  • Midorikawa, S. (1993). Semi-empirical estimation of peak ground acceleration from large earthquakes. Tectonophysics, 218(1-3), 287-295. https://doi.org/10.1016/0040-1951(93)90275-o
  • Miyakoshi, K., Horike, M., & Nakamiya, R. (2013). Long predominant period map and detection of resonant high‐rise buildings in the Osaka basin, western Japan. Bulletin of the Seismological Society of America, 103(1), 247-257. https://doi.org/10.1785/0120110334
  • Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface (0033-9008). (Railway Technical Research Institute, Quarterly Reports, Issue.
  • Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th world conference on earthquake engineering,
  • Nakamura, Y. (2019). What is the Nakamura method? Seismological Research Letters, 90(4), 1437-1443. https://doi.org/10.1785/0220180376
  • Nazarova, S. S., & Uzdin, A. (2020). Setting peak ground accelerations for performance-based design of earthquake-resistant constructions. Seismic instruments, 56, 225-236. https://doi.org/10.3103/s0747923920020085
  • Ocakoglu, F., Acikalin, S., Gokceoglu, C., Nefeslioglu, H., & Sonmez, H. (2007). Back-analysis of the source of the 1956 Eskisehir Earthquake using attenuation equation and damage data. Bulletin of Engineering Geology and the Environment, 66, 353-360. https://doi.org/10.1007/s10064-006-0066-x
  • Ocakoğlu, F., & Açikalin, S. (2010). Field evidences of secondary surface ruptures occurred during the 20 February 1956 Eskişehir earthquake in the NW Anatolia. Journal of earth system science, 119, 841-851. https://doi.org/10.1007/s12040-010-0057-y
  • Ocal, N. (1959). Subat 1956 Eskisehir zelzelesinin makro-ve mikrosismik etudu. ITU Sismoloji Enstitusu Yayini.
  • Okada, H., & Suto, K. (2003). The microtremor survey method. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801740
  • Orhan, A., Seyrek, E., & Tosun, H. (2007). A probabilistic approach for earthquake hazard assessment of the province of Eskişehir, Turkey. Natural Hazards and Earth System Sciences, 7(5), 607-614. https://doi.org/10.5194/nhess-7-607-2007
  • Özsayin, E., & Dirik, K. (2007). Quaternary activity of the Cihanbeyli and Yeniceoba fault zones: İnönü-Eskişehir fault system, Central Anatolia. Turkish Journal of Earth Sciences, 16(4), 471-492.
  • Öztürk, K., Yaltirak, C., & Alpar, B. (2009). The relationship between the tectonic setting of the Lake Iznik basin and the middle strand of the North Anatolian Fault. Turkish Journal of Earth Sciences, 18(2), 209-224. https://doi.org/10.3906/yer-0803-4
  • Öztürk, S., Beker, Y., Sarı, M., & Pehlivan, L. (2021). Estimation of ground types in different districts of Gümüşhane province based on the ambient vibrations H/V measurements. Sigma Journal of Engineering and Natural Sciences, 39(4), 374-391. https://doi.org/10.14744/sigma.2021.00026
  • Pekkan, E., Tun, M., Guney, Y., & Mutlu, S. (2015). Integrated seismic risk analysis using simple weighting method: the case of residential Eskişehir, Turkey. Natural Hazards and Earth System Science, 15(6), 1123-1133. https://doi.org/10.5194/nhess-15-1123-2015
  • Philip, S. E., & Santhi, M. H. (2020). Peak Ground Acceleration analysis using past earthquake data. Journal of Physics: Conference Series
  • Pitarka, A., Al-Amri, A., Pasyanos, M., Rodgers, A., & Mellors, R. (2014). Long-period ground motion in the Arabian Gulf from earthquakes in the Zagros mountains thrust belt. Pure and Applied Geophysics, 172. https://doi.org/10.1007/s00024-014-0858-z
  • Scherbaum, F., Hinzen, K.-G., & Ohrnberger, M. (2003). Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophysical Journal International, 152(3), 597-612. https://doi.org/10.1046/j.1365-246x.2003.01856.x
  • Seyitoğlu, G., Ecevitoğlu, B. G., Kaypak, B., Güney, Y., Tün, M., Esat, K., & Aldaş, G. G. U. (2015). Determining the main strand of the Eskişehir strike-slip fault zone using subsidiary structures and seismicity: a hypothesis tested by seismic reflection studies. Turkish Journal of Earth Sciences, 24, 1-20. https://doi.org/10.3906/yer-1406-5
  • Seyitoğlu, G., Esat, K., Temel, A., & Telsiz, S. (2010). Determination of main strand of a strike-slip fault by using subsidiary structures: Eskişehir Fault Zone as a case study. Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia Conference
  • Snieder, R., & Hagerty, M. (2004). Monitoring change in volcanic interiors using coda wave interferometry: Application to Arenal Volcano, Costa Rica. Geophysical Research Letters, 31(9). https://doi.org/10.1029/2004gl019670
  • Sylvette, B.-C., Cécile, C., Pierre-Yves, B., Fabrice, C., Peter, M., Jozef, K., & Fäh, D. (2006). H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167(2), 827-837. https://doi.org/10.1111/j.1365-246x.2006.03154.x
  • Şaroğlu, F., Emre, Ö., Doğan, A., & Yıldırım, C. (2005). Eskisehir Fay Zonu ve deprem potansiyeli. Eskişehir Fay Zonu ve İlişkili Sistemlerin Depremselliği Calıştayı, Bildiri Özleri Kitabı, 11.
  • Tan, Q., Li, Y., Wei, J., Han, J., & Luo, W. (2015). Influence of seismic ground motions with different frequency on super high-rise building structural seismic response. Journal of Information & Computational Science, 12(5), 1831-1843. https://doi.org/10.12733/jics20105621
  • Tokay, F., & Altunel, E. (2005). Neotectonic activity of Eskişehir fault zone in vicinity of İnönü-Dodurga area. Bulletin of the Mineral Research and Exploration, 130(130), 1-15.
  • Tun, M., Mutlu, S., & Pekkan, E. (2020). EstuNet: a new weak/strong-motion network with Geodatabase for Metropolitan Eskisehir and Bursa, West Anatolia, Turkey. Turk. J. Earthq. Res, 2(2), 193-208. https://doi.org/10.46464/tdad.785892
  • Tün, M. (2013). Mikrobölgeleme Çalışmalarında Yer Tepkisi ve Kayma Dalga Hız (Vs) Yapısının Yorumlanması: Eskişehir Örneği [Doktora, İstanbul Üniversitesi/Fen Bilimleri Enstitüsü].
  • Tün, M., Avdan, U., Kaplan, O., Güney, Y., Çabuk, A., Kaypak, B., Uyar Aldaş, G., Ecevitoğlu, B., Esat, K., & Seyitoğlu, G. (2010). A new look to the Eskişehir Fault. 19th International Geophysical Congress & Exhibition, Ankara, Turkey
  • Tün, M., Pekkan, E., & Mutlu, S. (2022). The depth of alluvial sediments and subsurface profiling along the Eskişehir Basin in Central Turkey using microtremor observations. Bulletin of Engineering Geology and the Environment, 81(5), 169. https://doi.org/10.1007/s10064-022-02676-1
  • Tün, M., Pekkan, E., Özel, O., & Guney, Y. (2016). An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method. Geophysical Journal International, 207(1), 589-607. https://doi.org/10.1093/gji/ggw294
  • Usta, Y. B., & Sayıl, N. (2022). Estimation of site dynamic characteristics using ambient noise measurements in KTU campus, Trabzon, NE Turkey. Arabian Journal of Geosciences, 15(1), 125. https://doi.org/10.1007/s12517-021-08887-2
  • Wapenaar, K., & Fokkema, J. (2006). Green’s function representations for seismic interferometry. Geophysics, 71(4), SI33-SI46. https://doi.org/10.1190/1.2213955
  • Yaltırak, C. (2002). Tectonic evolution of the Marmara Sea and its surroundings. Marine Geology, 190(1-2), 493-529. https://doi.org/10.1016/s0025-3227(02)00360-2
  • Yamanaka, H., Özmen, Ö. T., Chimoto, K., Alkan, M. A., Tün, M., Pekkan, E., Özel, O., Polat, D., & Nurlu, M. (2018). Exploration of S-wave velocity profiles at strong motion stations in Eskisehir, Turkey, using microtremor phase velocity and S-wave amplification. Journal of Seismology, 22, 1127-1137. https://doi.org/10.1007/s10950-018-9756-7
  • Yoshimoto, K., & Takemura, S. (2014). A study on the predominant period of long-period ground motions in the Kanto Basin, Japan. Earth, Planets and Space, 66, 1-7. https://doi.org/10.1186/1880-5981-66-100
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Geophysics (Other)
Journal Section Articles
Authors

Mehmet Safa Arslan 0000-0002-1233-963X

Asım Oğuz Özel 0000-0002-4825-5382

Publication Date September 15, 2024
Submission Date April 17, 2024
Acceptance Date June 27, 2024
Published in Issue Year 2024

Cite

APA Arslan, M. S., & Özel, A. O. (2024). Eskişehir havzasında H/V ve SPAC yöntemleriyle sismik analiz ve derinlik profili çalışmaları. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(3), 883-909. https://doi.org/10.17714/gumusfenbil.1469624