Research Article
BibTex RIS Cite

Synthesis, Characterization of ZnO/CuO Nanoparticles and Determination of Its Photocatalytic Activity Using 2,6-Dichlorophenol

Year 2018, , 192 - 201, 31.07.2018
https://doi.org/10.17714/gumusfenbil.302604

Abstract

In this study, The studies on the degradation of
2,6-dichlorophenol (2,6-DKF), which is highly toxic to the ecological
direction, were carried out using different catalysts. SEM analyzes showed that
the synthesized particles were close to the spherical morphology. XRD analyzes
show that the ZnO and CuO have smaller shifts in the characteristic 2θ values
in ZnO/CuO composite structure. The BET surface area of composite ZnO / CuO
particles was found to be higher than bare ZnO and CuO catalysts. The findings
of the photocatalytic studies show that the composite particles are more
effective than the pure ones because of the synergistic effect and the
structural properties of the two catalysts in the composite structure.

References

  • Ahmed, A.B., Jibril, B., Danwittayakul, S. ve Dutta, J., 2014. Microwave-enhanced degradation of phenol over Ni-loaded ZnO nanorods catalyst. Applied Catalysis B: Environmental, 156-157, 456-465.
  • Chow, L., Lupana, O., Chai, G., Khallaf, H., Onoa, L.K., Cuenyaa, B.R., Tiginyanu, I.M., Ursakif, V.V., Sonteac, V. ve Schultea, A., 2013. Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sensual Actuators A, 189, 399–408.
  • Gan, H., Zhang, G., ve Huang, H. 2013. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites. Journal of Hazardous Materials, 250-251, 131-137.
  • Gnanaprakasam, A., Sivakumar V.M., Sivayogavalli, P.L. ve Thirumarimurugan, M., 2015. Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azodyes. Ecotoxicology and Environmental Safety, 121, 121-125.
  • Guo, Y., Gong, Z., Li, P., Zhang, W. ve Gao, B., 2016. Preparation, characterization and enhancement of the visible-light photocatalytic activity of In2O3/Na-bentonite composite. Ceramics International, 42, 8850–8855.
  • Hadjltaief, H.B., Zina, M.B., Galvez, M.E. ve Da Costa, P., 2016. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. Journal of Photochemistry and Photobiology. A: Chemistry, 315, 25-33.
  • Kanakaraju, D., Motti, C. A., Glass, B. D. ve Oelgemöller, M., 2015. TiO2 photocatalysis of naproxen: Effect of the water matrix, anions and diclofenac on degradation rates. Chemosphere, 139, 579-588.
  • Kansal, S. K., ve Chopra, M., 2012. Photocatalytic degradation of 2, 6-Dichlorophenol in aqueous phase using titania as a photocatalyst. Engineering, 4, 416-426.
  • Li, B.J. ve Cao, H., 2011, ZnO@graphene composite with enhanced performance for the removal of dye from water, Journal of Material Chemistry, 21, 10, 3346-3349.
  • Li, B.X. ve Wang, Y. F. 2010., Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite. Superlattices Microstructure, 47, 615-623.
  • Li, D. ve Haneda, H., 2003., Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere, 51, 129–137.
  • Mansournia, M. ve Rafizadeh, S., Hosseinpour-Mashkani, S.M., 2016. An ammonia vapor-based approach to ZnO nanostructures and their study as photocatalyst material. Ceramics International, 42, 907-916.
  • Meshram, S., Limaye, R., Ghodke, S., Nigam, S., Sonawane, S. ve Chikate, R., 2011. Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol, Chemical Engineering Journal, 172, 1008-1015.
  • Ohtani, B. 2010., Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C, 11, 157-178.
  • Peralta-Videa, J.R., Zhao, L., Lopez-Moreno, M.L., de la Rosa, G., Hong, J. ve Gardea-Torresdey, J.L., 2011. Nanomaterials and the environment: a review for the biennium 2008-2010. Journal of Hazardous Material, 186, 1-15.
  • Sathishkumar, P., Sweena, R., Wu, J. J., & Anandan, S., 2011. Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. Chemical Engineering Journal, 171,1, 136-140.
  • Seftel, E.M., Puscasu, M.C., Mertens, M., Cool, P. ve Carja, G., 2014. Assemblies of nanoparticles of CeO2–ZnTi-LDHs and their derived mixed oxides as novel photocatalytic systems for phenol degradation. Applied Catalysis B Environmental, 150-151, 157–166.
  • Sharma, R. K., ve Ghose, R., 2014. Synthesis of nanocrystalline CuO–ZnO mixed metal oxide powder by a homogeneous precipitation method. Ceramics International, 40,7, 10919-10926.
  • Sherly, E.D., Vijaya, J.J. ve Kennedy, L.J., 2015. Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2,4-dichlorophenol. Chinese Journal of Catalysis, 36, 1263–1272.
  • Soltani, R.D.C., Jorfi, S., Safari, M. ve Rajaei, M.S., 2016. Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: Response surface methodological approach. Journal of Environmental Management, 179, 47-57.
  • Teh, C. M., ve Mohamed, A. R. 2011. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. Journal of Alloys and Compounds, 509,5, 1648-1660.
  • Tolosana-Moranchel, A., Anderson, J. A., Casas, J. A., Faraldos, M., ve Bahamonde, A., 2017. Defining the role of substituents on adsorption and photocatalytic degradation of phenolic compounds. Journal of Environmental Chemical Engineering, 5,5, 4612-4620.
  • Xu, H., Zhang, D., Xu, A., Wu, F., ve Cao, R., 2015. Quantum sized zinc oxide immobilized on bentonite clay and degradation of C.I. acid red 35 in aqueous under ultraviolet light. International Journal of Photoenergy, 2015,1-7.
  • Ye, J., Li, X., Hong, J., Chen, J. ve Fan, Q., 2015. Photocatalytic degradation of phenol over ZnO nanosheets immobilized on montmorillonite. Material Science in Semiconductor Processing. 39, 17–22.

ZnO/CuO Nanopartiküllerinin Sentezi Karakterizasyonu ve Fotokatalitik Aktivitesinin 2,6-Diklor Fenol Kullanılarak Belirlenmesi

Year 2018, , 192 - 201, 31.07.2018
https://doi.org/10.17714/gumusfenbil.302604

Abstract

Bu çalışmada ekolojik
yönden son derece toksik olan 2,6-diklorfenolün (2,6-DKF) farklı katalizörler
kullanılarak bozunmasına ait çalışmalar yapılmıştır. SEM analizleri sentezlenen
partiküllerin küreselliğe yakın bir morfolojide olduğunu göstermiştir. XRD
analizleri kompozit halde iken ZnO ve CuO’nun karakteristik 2θ değerlerinden
daha büyük açılara kaymaların olduğu göstermektedir. Kompozit ZnO/CuO
partiküllerinin BET yüzey alanının ZnO ve CuO’dan daha yüksek olduğu
gözlemlenmiştir. Fotokatalitik çalışmalarda elde edilen bulgular kompozit
ZnO/CuO partiküllerinin yalnız ZnO ve CuO’ya göre daha etkin olduğu, bu
etkinliğin her iki katalizör kompozite halde iken aralarında oluşan sinerjitik
etkiden ve yapısal özelliklerden kaynaklandığı düşünülmektedir. 

References

  • Ahmed, A.B., Jibril, B., Danwittayakul, S. ve Dutta, J., 2014. Microwave-enhanced degradation of phenol over Ni-loaded ZnO nanorods catalyst. Applied Catalysis B: Environmental, 156-157, 456-465.
  • Chow, L., Lupana, O., Chai, G., Khallaf, H., Onoa, L.K., Cuenyaa, B.R., Tiginyanu, I.M., Ursakif, V.V., Sonteac, V. ve Schultea, A., 2013. Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sensual Actuators A, 189, 399–408.
  • Gan, H., Zhang, G., ve Huang, H. 2013. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites. Journal of Hazardous Materials, 250-251, 131-137.
  • Gnanaprakasam, A., Sivakumar V.M., Sivayogavalli, P.L. ve Thirumarimurugan, M., 2015. Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azodyes. Ecotoxicology and Environmental Safety, 121, 121-125.
  • Guo, Y., Gong, Z., Li, P., Zhang, W. ve Gao, B., 2016. Preparation, characterization and enhancement of the visible-light photocatalytic activity of In2O3/Na-bentonite composite. Ceramics International, 42, 8850–8855.
  • Hadjltaief, H.B., Zina, M.B., Galvez, M.E. ve Da Costa, P., 2016. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. Journal of Photochemistry and Photobiology. A: Chemistry, 315, 25-33.
  • Kanakaraju, D., Motti, C. A., Glass, B. D. ve Oelgemöller, M., 2015. TiO2 photocatalysis of naproxen: Effect of the water matrix, anions and diclofenac on degradation rates. Chemosphere, 139, 579-588.
  • Kansal, S. K., ve Chopra, M., 2012. Photocatalytic degradation of 2, 6-Dichlorophenol in aqueous phase using titania as a photocatalyst. Engineering, 4, 416-426.
  • Li, B.J. ve Cao, H., 2011, ZnO@graphene composite with enhanced performance for the removal of dye from water, Journal of Material Chemistry, 21, 10, 3346-3349.
  • Li, B.X. ve Wang, Y. F. 2010., Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite. Superlattices Microstructure, 47, 615-623.
  • Li, D. ve Haneda, H., 2003., Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere, 51, 129–137.
  • Mansournia, M. ve Rafizadeh, S., Hosseinpour-Mashkani, S.M., 2016. An ammonia vapor-based approach to ZnO nanostructures and their study as photocatalyst material. Ceramics International, 42, 907-916.
  • Meshram, S., Limaye, R., Ghodke, S., Nigam, S., Sonawane, S. ve Chikate, R., 2011. Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol, Chemical Engineering Journal, 172, 1008-1015.
  • Ohtani, B. 2010., Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C, 11, 157-178.
  • Peralta-Videa, J.R., Zhao, L., Lopez-Moreno, M.L., de la Rosa, G., Hong, J. ve Gardea-Torresdey, J.L., 2011. Nanomaterials and the environment: a review for the biennium 2008-2010. Journal of Hazardous Material, 186, 1-15.
  • Sathishkumar, P., Sweena, R., Wu, J. J., & Anandan, S., 2011. Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. Chemical Engineering Journal, 171,1, 136-140.
  • Seftel, E.M., Puscasu, M.C., Mertens, M., Cool, P. ve Carja, G., 2014. Assemblies of nanoparticles of CeO2–ZnTi-LDHs and their derived mixed oxides as novel photocatalytic systems for phenol degradation. Applied Catalysis B Environmental, 150-151, 157–166.
  • Sharma, R. K., ve Ghose, R., 2014. Synthesis of nanocrystalline CuO–ZnO mixed metal oxide powder by a homogeneous precipitation method. Ceramics International, 40,7, 10919-10926.
  • Sherly, E.D., Vijaya, J.J. ve Kennedy, L.J., 2015. Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2,4-dichlorophenol. Chinese Journal of Catalysis, 36, 1263–1272.
  • Soltani, R.D.C., Jorfi, S., Safari, M. ve Rajaei, M.S., 2016. Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: Response surface methodological approach. Journal of Environmental Management, 179, 47-57.
  • Teh, C. M., ve Mohamed, A. R. 2011. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. Journal of Alloys and Compounds, 509,5, 1648-1660.
  • Tolosana-Moranchel, A., Anderson, J. A., Casas, J. A., Faraldos, M., ve Bahamonde, A., 2017. Defining the role of substituents on adsorption and photocatalytic degradation of phenolic compounds. Journal of Environmental Chemical Engineering, 5,5, 4612-4620.
  • Xu, H., Zhang, D., Xu, A., Wu, F., ve Cao, R., 2015. Quantum sized zinc oxide immobilized on bentonite clay and degradation of C.I. acid red 35 in aqueous under ultraviolet light. International Journal of Photoenergy, 2015,1-7.
  • Ye, J., Li, X., Hong, J., Chen, J. ve Fan, Q., 2015. Photocatalytic degradation of phenol over ZnO nanosheets immobilized on montmorillonite. Material Science in Semiconductor Processing. 39, 17–22.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ali İmran Vaizoğullar

Publication Date July 31, 2018
Submission Date March 29, 2017
Acceptance Date December 31, 2017
Published in Issue Year 2018

Cite

APA Vaizoğullar, A. İ. (2018). ZnO/CuO Nanopartiküllerinin Sentezi Karakterizasyonu ve Fotokatalitik Aktivitesinin 2,6-Diklor Fenol Kullanılarak Belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(2), 192-201. https://doi.org/10.17714/gumusfenbil.302604