Research Article
BibTex RIS Cite

Türkiye’nin Doğu Karadeniz Bölgesinde Yetişen Karayemiş Bitkisinin (Prunus laurocerasus L.) Meyve ve Toprak Örneklerinin Radyolojik Değerlendirilmesi

Year 2019, , 229 - 238, 15.04.2019
https://doi.org/10.17714/gumusfenbil.398293

Abstract

Bu
çalışma Doğu Karadeniz Bölgesinde on dört farklı istasyondan toplanan karayemiş
(Prunus laurocerasus L.)‘in meyve kısmında ve bu türün köklerindeki toprak
örneklerinde 226Ra, 232Th, 137Cs ve 40K
radyonüklid konsantrasyon sonuçlarını göstermektedir. Karayemişin meyve
kısmında 226Ra, 232Th, 137Cs ve 40K’ın
ortalama aktivite konsantrasyonları sırasıyla 1.75, 1.03, 2.07 ve 215.38 Bq kg-1(kuru
ağırlık)’dır. Toprak örneklerinde 226Ra, 232Th ve 40K’ın
ortalama aktivite konsantransyonları Dünya ortalaması değerlerinden daha düşük
olarak belirlenmiştir. Karayemiş meyvesi ve toprak örneklerinde en yüksek 137Cs
radyonüklid konsantrasyonu Rize Merkez istasyonunda gözlemlenmiştir. Bunlara ek
olarak, karayemişin tüketimine bağlı olarak 226Ra, 232Th,
137Cs ve 40K’ın günlük alımı, yıllık alınan etkin doz ve
kanserojen risk değerleri hesaplanmış ve uluslararası değerlerle karşılaştırılmıştır.
Ayrıca toprak örneklerinde radyum eşdeğer aktivitesi, soğurulmuş doz oranı, dış
tehlike indeksi ve yıllık etkin doz eşdeğeri hesaplanmıştır. Bu hesaplamalara
ilaveten topraktan karayemişin meyve kısmına geçen 226Ra, 232Th,
137Cs ve 40K radyonüklidleri için transfer faktörleri
belirlenmiştir. Bu çalışmada elde edilen sonuçlar kanserojen risk ve radyolojik
etki parametre değerlerinin herhangi bir risk taşımadığını göstermektedir.

References

  • Alasalvar, C., Al-Farsi, M. ve Shahidi, F., 2005. Compositional characteristics and antioxidant components of cherry laurel varieties and pekmez, Journal of Food Science, 70, 1, 47─52.
  • Amanjeet, Kumar, A., Kumar, S., Singh, J., Singh, P. ve Bajwa, B.S., 2017. Assessment of natural radioactivity levels and associated dose rates in soil samples from historical city Panipat, India, Journal of Radiation Research and Applied Sciences, 10, 283–288.
  • Amrani, D. ve Tahtat, M., 2001. Natural radioactivity in Algerian building materials, Applied Radiation and Isotopes, 54, 4, 687–689.
  • Aung, H.P., Aye, Y.S., Mensah, A.D., Omari, R.A., Djedidi, S., Oikawa, Y., Ohkama-Ohtsu, N., Yokoyama, T. ve Bellingrath-Kimura, S.D., 2015. Relations of fine-root morphology on 137Cs uptake by fourteen Brassica species, Journal of Environmental Radioactivity, 150, 203–212.
  • Badran, H.M., Sharshar, T. ve Elnimer, T., 2003. Levels of 137Cs and 40K in edible parts of some vegetables consumed in Egypt, Journal of Environmental Radioactivity, 67, 181‒190.
  • Baker, A.J.M. ve Brooks, R.R., 1989. Terrestrial higher plants which hyperaccumulate metallic elements ‒ a review of their distribution, ecology and phytochemistry, Biorecovery, 1, 81–126.
  • Baltas, H., Kiris, E., Ustabas, I., Yilmaz, E., Sirin, M., Kuloglu, E. ve Erdogan Gunes, B., 2014. Determination of natural radioactivity levels of some concretes and mineral admixtures in Turkey, Asian Journal of Chemistry, 26, 13, 3946–3952.
  • Baltas, H., Kiris, E. ve Sirin, M., 2017. Determination of radioactivity levels and heavy metal concentrations in seawater, sediment and anchovy (Engraulis encrasicolus) from the Black Sea in Rize, Turkey, Marine Pollution Bulletin, 116, 528–533.
  • Beretka, J. ve Mathew, P.J., 1985. Natural radioactivity of Australian building materials, waste and by-products, Health Physics, 48, 87–95.
  • Celik, N., Cevik, U., Celik, A. ve Kucukomeroglu, B., 2008. Determination of indoor radon and soil radioactivity levels in Giresun, Turkey, Journal of Environmental Radioactivity, 99, 1349–1354.
  • Celik, N., Cevik, U., Celik, A. ve Koz, B., 2009. Natural and artificial radioactivity measurements in Eastern Black Sea region of Turkey, Journal of Hazardous Materials, 162, 146–153.
  • Chen, S.B., Zhu, Y.G. ve Hu, Q.H., 2005. Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China, Journal of Environmental Radioactivity, 82,223–236.
  • Currie, L.A., 1968. Limits for qualitative detection and quantitative determination. Application to radiochemistry, Analytical Chemistry, 40, 586–593.
  • Hu, N., Ding, D., Li, G., Zheng, J., Li, L., Zhao, W. ve Wang, Y., 2014. Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China, Journal of Environmental Radioactivity, 129, 100–106.
  • IAEA (International Atomic Energy Agency), 2011. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. IAEA Safety standards series no. GSR Part 3 (Interim), STI/PUB/1531, pp. 190–219.
  • IUR (International Union of Radio ecologists), 1994. Handbook of parameter values for the prediction of radionuclide transfer in temperate environments, Technical reports series no. 364, Vienna: International Atomic Energy Agency (IAEA).
  • Kaewtubtim, P., Meeinkuirt, W., Seepom, S. ve Pichtel, J., 2017. Radionuclide (226Ra, 232Th, 40K) accumulation among plant species in mangrove ecosystems of Pattani Bay, Thailand, Marine Pollution Bulletin, 115, 391–400.
  • Keser, R., Korkmaz Görür, F., Akçay, N. ve Okumuşoğlu, N.T., 2011. Radionuclide concentration in tea, cabbage, orange, kiwi and soil and lifetime cancer risk due to gamma radioactivity in Rize, Turkey, Journal of the Science of Food and Agriculture, 91, 987‒991.
  • Khandaker, M.U., Norfadira, B.W., Amin, Y.M. ve Bradley, D.A., 2013. Committed effective dose from naturally occurring radionuclides in shellfish, Radiation Physics and Chemistry, 88, 1–6.
  • Khandaker, M.U., Asaduzzaman, Kh., Nawi, S.M., Usman, A.R., Amin, Y.M., Daar, E., Bradley, D.A., Ahmed, H. ve Okhunov, A.A., 2015. Assessment of radiation and heavy metals risk due to the dietary intake of marine fishes (Rastrelliger kanagurta) from the Straits of Malacca. PLOS ONE 10,6, 1‒16.
  • Kolayli, S., Küçük, M., Duran, C., Candan, F. ve Dinçer, B., 2003. Chemical and antioxidant properties of Laurocerasus officinalis Roem. (cherry laurel) fruit grown in the Black Sea region, Journal of Agricultural and Food Chemistry, 51, 25, 7489‒7494.
  • Korkmaz Görür, F., Keser, R., Akçay, N., Dizman, S., As, N. ve Okumuşoğlu, N.T., 2012. Radioactivity and heavy metal concentrations in food samples from Rize, Turkey, Journal of the Science of Food and Agriculture, 92, 307–312.
  • Krieger, R., 1981. Radioactivity of construction materials, Betonwerk Fertigteil Technology, 47, 8, 468‒473.
  • Kurnaz, A., Küçükömeroğlu, B., Keser, R., Okumusoglu, N.T., Korkmaz, F., Karahan, G. ve Çevik, U., 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey), Applied Radiation and Isotopes, 65, 1281–1289.
  • Kurnaz, A., Kucukomeroglu, B., Damla, N. ve Cevik, U., 2011. Radiological maps for Trabzon, Turkey, Journal of Environmental Radioactivity, 102, 393–399.
  • Liyana-Pathirana, C.M., Shahidi, F. ve Alasalvar, C., 2006. Antioxidant activity of cherry laurel fruit (Laurocerasus officinalis Roem.) and its concentrated juice, Food Chemistry, 99, 1, 121─128.
  • Lauria, D.C., Ribeiro, F.C.A., Conti, C.C. ve Loureiro, F.A., 2009. Radium and uranium levels in vegetables grown using different farming management systems, Journal of Environmental Radioactivity, 100, 176–183.
  • Lu, J., Huang, Y., Li, F., Wang, L., Li, S. ve Hsia, Y., 2006. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China, Journal of Environmental Radioactivity, 90, 89–99.
  • Persson, B.R.R. ve Holm, E., 2011. Polonium-210 and lead-210 in the terrestrial environment: a historical review, Journal of Environmental Radioactivity, 102, 420–429.
  • Pulhani, V.A., Dafauti, S., Hegde, A.G., Sharma, R.M. ve Mishra, U.C., 2005. Uptake and distribution of natural radioactivity in wheat plants from soil, Journal of Environmental Radioactivity, 79, 331–346.
  • Shanthi, G., Kumaran, J.T.T., Raj, G.A.G. ve Maniyan, C.G., 2012. Transfer factor of the radionuclides in food crops from high-background radiation area of south west India, Radiation Protection Dosimetry, 149, 3, 327–332.
  • Strode, S.A., Ott, L.E., Pawson, S. ve Bowyer, T.W., 2012. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010, Journal of Geophysical Research, 117, 1–8.
  • Tzortzis, M., Svoukis, E. ve Tsetos, H., 2004. A comprehensive study of natural gamma radioactivity levels and associated dose rates from surface soils in Cyprus, Radiation Protection Dosimetry, 109, 217–224.
  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1982. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. United Nations, New York.
  • UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation), 2000. Radiation sources and Effects of ionizing radiation. Report to General Assembly, with Scientific Annexes. United Nations, New York.
  • USEPA (US Energy Protection Agency), 1999. Cancer risk coefficients for environmental exposureto radionuclides. Federal Guidance Report No.13;EPA 402-R-99-001.
  • Yazici, K., Ertuğral, B., Damla, N. ve Apaydın, G., 2008. Radioactive Contamination in Lichens Collected from Trabzon and Rize in the Eastern Black Sea Region, Turkey, and a Comparison with that of 1995, Bulletin of Environmental Contamination and Toxicology, 80, 475‒479.

Radiological Evaluation of fruit and soil samples of Cherry Laurel Plant (Prunus laurocerasus L.) Growing in the Eastern Black Sea Region of Turkey

Year 2019, , 229 - 238, 15.04.2019
https://doi.org/10.17714/gumusfenbil.398293

Abstract

This study presents
the results of 226Ra, 232Th, 137Cs and 40K
radionuclide concentrations in the fruit part of cherry laurel (Prunus
laurocerasus L.) and soil samples in root of this species were collected from
fourteen different stations in the Eastern Black Sea Region. The mean activity
concentrations of 226Ra, 232Th, 137Cs and 40K
in the fruit part of cherry laurel were 1.75, 1.03, 2.07 and 215.38 Bq kg-1,
respectively. The mean activity concentrations of 226Ra, 232Th
and 40K in soil samples were determined to be lower than the world
average value. The highest 137Cs radionuclide concentration in fruit
of cherry laurel and soil samples was monitored in the Rize center location. In
addition, radiological impact parameters such as daily intake of 226Ra,
232Th, 137Cs and 40K, annual committed
effective dose and carcinogenic risk due to the consumption of cherry laurel
were calculated and compared with the international data. The radium equivalent
activity (Raeq), the absorbed dose rate (D), the external hazard
index (Hex) and the annual effective dose equivalent (AEDE) for soil
samples were also evaluated. Moreover, transfer factors of 226Ra, 232Th,
137Cs and 40K from soil to fruit part of cherry laurel
were determined. The results indicate that the lifetime cancer risk and the
radiological impact parameters values in the samples from the area studied in
this present work is not significant.

References

  • Alasalvar, C., Al-Farsi, M. ve Shahidi, F., 2005. Compositional characteristics and antioxidant components of cherry laurel varieties and pekmez, Journal of Food Science, 70, 1, 47─52.
  • Amanjeet, Kumar, A., Kumar, S., Singh, J., Singh, P. ve Bajwa, B.S., 2017. Assessment of natural radioactivity levels and associated dose rates in soil samples from historical city Panipat, India, Journal of Radiation Research and Applied Sciences, 10, 283–288.
  • Amrani, D. ve Tahtat, M., 2001. Natural radioactivity in Algerian building materials, Applied Radiation and Isotopes, 54, 4, 687–689.
  • Aung, H.P., Aye, Y.S., Mensah, A.D., Omari, R.A., Djedidi, S., Oikawa, Y., Ohkama-Ohtsu, N., Yokoyama, T. ve Bellingrath-Kimura, S.D., 2015. Relations of fine-root morphology on 137Cs uptake by fourteen Brassica species, Journal of Environmental Radioactivity, 150, 203–212.
  • Badran, H.M., Sharshar, T. ve Elnimer, T., 2003. Levels of 137Cs and 40K in edible parts of some vegetables consumed in Egypt, Journal of Environmental Radioactivity, 67, 181‒190.
  • Baker, A.J.M. ve Brooks, R.R., 1989. Terrestrial higher plants which hyperaccumulate metallic elements ‒ a review of their distribution, ecology and phytochemistry, Biorecovery, 1, 81–126.
  • Baltas, H., Kiris, E., Ustabas, I., Yilmaz, E., Sirin, M., Kuloglu, E. ve Erdogan Gunes, B., 2014. Determination of natural radioactivity levels of some concretes and mineral admixtures in Turkey, Asian Journal of Chemistry, 26, 13, 3946–3952.
  • Baltas, H., Kiris, E. ve Sirin, M., 2017. Determination of radioactivity levels and heavy metal concentrations in seawater, sediment and anchovy (Engraulis encrasicolus) from the Black Sea in Rize, Turkey, Marine Pollution Bulletin, 116, 528–533.
  • Beretka, J. ve Mathew, P.J., 1985. Natural radioactivity of Australian building materials, waste and by-products, Health Physics, 48, 87–95.
  • Celik, N., Cevik, U., Celik, A. ve Kucukomeroglu, B., 2008. Determination of indoor radon and soil radioactivity levels in Giresun, Turkey, Journal of Environmental Radioactivity, 99, 1349–1354.
  • Celik, N., Cevik, U., Celik, A. ve Koz, B., 2009. Natural and artificial radioactivity measurements in Eastern Black Sea region of Turkey, Journal of Hazardous Materials, 162, 146–153.
  • Chen, S.B., Zhu, Y.G. ve Hu, Q.H., 2005. Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China, Journal of Environmental Radioactivity, 82,223–236.
  • Currie, L.A., 1968. Limits for qualitative detection and quantitative determination. Application to radiochemistry, Analytical Chemistry, 40, 586–593.
  • Hu, N., Ding, D., Li, G., Zheng, J., Li, L., Zhao, W. ve Wang, Y., 2014. Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China, Journal of Environmental Radioactivity, 129, 100–106.
  • IAEA (International Atomic Energy Agency), 2011. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. IAEA Safety standards series no. GSR Part 3 (Interim), STI/PUB/1531, pp. 190–219.
  • IUR (International Union of Radio ecologists), 1994. Handbook of parameter values for the prediction of radionuclide transfer in temperate environments, Technical reports series no. 364, Vienna: International Atomic Energy Agency (IAEA).
  • Kaewtubtim, P., Meeinkuirt, W., Seepom, S. ve Pichtel, J., 2017. Radionuclide (226Ra, 232Th, 40K) accumulation among plant species in mangrove ecosystems of Pattani Bay, Thailand, Marine Pollution Bulletin, 115, 391–400.
  • Keser, R., Korkmaz Görür, F., Akçay, N. ve Okumuşoğlu, N.T., 2011. Radionuclide concentration in tea, cabbage, orange, kiwi and soil and lifetime cancer risk due to gamma radioactivity in Rize, Turkey, Journal of the Science of Food and Agriculture, 91, 987‒991.
  • Khandaker, M.U., Norfadira, B.W., Amin, Y.M. ve Bradley, D.A., 2013. Committed effective dose from naturally occurring radionuclides in shellfish, Radiation Physics and Chemistry, 88, 1–6.
  • Khandaker, M.U., Asaduzzaman, Kh., Nawi, S.M., Usman, A.R., Amin, Y.M., Daar, E., Bradley, D.A., Ahmed, H. ve Okhunov, A.A., 2015. Assessment of radiation and heavy metals risk due to the dietary intake of marine fishes (Rastrelliger kanagurta) from the Straits of Malacca. PLOS ONE 10,6, 1‒16.
  • Kolayli, S., Küçük, M., Duran, C., Candan, F. ve Dinçer, B., 2003. Chemical and antioxidant properties of Laurocerasus officinalis Roem. (cherry laurel) fruit grown in the Black Sea region, Journal of Agricultural and Food Chemistry, 51, 25, 7489‒7494.
  • Korkmaz Görür, F., Keser, R., Akçay, N., Dizman, S., As, N. ve Okumuşoğlu, N.T., 2012. Radioactivity and heavy metal concentrations in food samples from Rize, Turkey, Journal of the Science of Food and Agriculture, 92, 307–312.
  • Krieger, R., 1981. Radioactivity of construction materials, Betonwerk Fertigteil Technology, 47, 8, 468‒473.
  • Kurnaz, A., Küçükömeroğlu, B., Keser, R., Okumusoglu, N.T., Korkmaz, F., Karahan, G. ve Çevik, U., 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey), Applied Radiation and Isotopes, 65, 1281–1289.
  • Kurnaz, A., Kucukomeroglu, B., Damla, N. ve Cevik, U., 2011. Radiological maps for Trabzon, Turkey, Journal of Environmental Radioactivity, 102, 393–399.
  • Liyana-Pathirana, C.M., Shahidi, F. ve Alasalvar, C., 2006. Antioxidant activity of cherry laurel fruit (Laurocerasus officinalis Roem.) and its concentrated juice, Food Chemistry, 99, 1, 121─128.
  • Lauria, D.C., Ribeiro, F.C.A., Conti, C.C. ve Loureiro, F.A., 2009. Radium and uranium levels in vegetables grown using different farming management systems, Journal of Environmental Radioactivity, 100, 176–183.
  • Lu, J., Huang, Y., Li, F., Wang, L., Li, S. ve Hsia, Y., 2006. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China, Journal of Environmental Radioactivity, 90, 89–99.
  • Persson, B.R.R. ve Holm, E., 2011. Polonium-210 and lead-210 in the terrestrial environment: a historical review, Journal of Environmental Radioactivity, 102, 420–429.
  • Pulhani, V.A., Dafauti, S., Hegde, A.G., Sharma, R.M. ve Mishra, U.C., 2005. Uptake and distribution of natural radioactivity in wheat plants from soil, Journal of Environmental Radioactivity, 79, 331–346.
  • Shanthi, G., Kumaran, J.T.T., Raj, G.A.G. ve Maniyan, C.G., 2012. Transfer factor of the radionuclides in food crops from high-background radiation area of south west India, Radiation Protection Dosimetry, 149, 3, 327–332.
  • Strode, S.A., Ott, L.E., Pawson, S. ve Bowyer, T.W., 2012. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010, Journal of Geophysical Research, 117, 1–8.
  • Tzortzis, M., Svoukis, E. ve Tsetos, H., 2004. A comprehensive study of natural gamma radioactivity levels and associated dose rates from surface soils in Cyprus, Radiation Protection Dosimetry, 109, 217–224.
  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1982. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. United Nations, New York.
  • UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation), 2000. Radiation sources and Effects of ionizing radiation. Report to General Assembly, with Scientific Annexes. United Nations, New York.
  • USEPA (US Energy Protection Agency), 1999. Cancer risk coefficients for environmental exposureto radionuclides. Federal Guidance Report No.13;EPA 402-R-99-001.
  • Yazici, K., Ertuğral, B., Damla, N. ve Apaydın, G., 2008. Radioactive Contamination in Lichens Collected from Trabzon and Rize in the Eastern Black Sea Region, Turkey, and a Comparison with that of 1995, Bulletin of Environmental Contamination and Toxicology, 80, 475‒479.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Erkan Kırış

Publication Date April 15, 2019
Submission Date February 24, 2018
Acceptance Date August 10, 2018
Published in Issue Year 2019

Cite

APA Kırış, E. (2019). Türkiye’nin Doğu Karadeniz Bölgesinde Yetişen Karayemiş Bitkisinin (Prunus laurocerasus L.) Meyve ve Toprak Örneklerinin Radyolojik Değerlendirilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(2), 229-238. https://doi.org/10.17714/gumusfenbil.398293