Research Article
BibTex RIS Cite

Arteriyal Kan Basınç Sinyallerinin Elektriksel Analojisi

Year 2018, , 61 - 66, 30.11.2018
https://doi.org/10.17714/gumusfenbil.432685

Abstract

Bu çalışmada, fizyoloji alanında karmaşık bir sistem
olarak kabul edilen insan kardiyovasküler sistemin sahip olduğu mekanizmaların
ve dinamiklerinin anlaşılabilmesine fayda sağlayacak elektriksel bir devre
modeli önerilmektedir. Windkessel model olarak tanımlanan elektriksel devre
modeli, kalpten pompalanan kan basıncının arteriyel sistemdeki karakteristik
etkisinin gözlemlenmesinde önemli rol oynamaktadır. Windkessel modelin girişine
entegre ettiğimiz ayrı bir elektrik devre modeli, ortalama arteriyel kan
basıncı sinyallerinin beklenen değer aralıklarında gözlemlenmesini
sağlamaktadır. Bu çalışmada ele alınan ve geliştirmeye çalıştığımız Windkessel
devre modeli laboratuvar ortamında kurulumu gerçekleştirilmiş ve sonuçları
gözlemlenmiştir. Kalp ve arteriyel sistem ilişkisinde rol alan parametre
sayılarının arttırılarak, Windkessel modelin geliştirilmesine bir alt yapı
olması açısından bu çalışmanın literatüre katkı sağlayacağı düşünülmektedir.

References

  • Abdolrazaghi, M., Navidbakhsh, M. and Hassani, K., 2010. Mathematical Modelling and electrical Analog Equilavent of the Human Cardiovascular System, Cardiovasc Eng, 10, 45-51.
  • Al-Jaafreh, M. and Al-Jumily, A., 2005. Multi Agent System for Estimation of Cardiovascular Parameters. 1st International Conference on Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering, 269-299.
  • Bora, Ş., Evren, V., Emek, S. and Çakırlar, I., 2017. Agent-based modeling and simulation of blood vessels in the cardiovascular system. Simulation: Transactions of the Society for Modeling and Simulation International, 1-16. Doi: 0037549717712602.
  • Capoccia, M., 2015. Development and Characterization of the Arterial Windkessel and Its Role During Left Ventricular Assist Device Assistance, Artificial Organs, 39 (8), 138-153.
  • Creigen, V., Ferracina, L., Hlod, A., Mourik, S., Sjauw, K., Rottschafer, V., Vellekoop, M. and Zegeling P., 2007. Modeling a Heart Pump. European Study Group Mathematics with Industry, Utrecht.
  • De Pater, L. and Van Den Berg, J.W., 1964. An Electrical Analogue of the Entire Human Circulatory System. Med. Electron. Biol. Engng., 2, 161-166.
  • Fazeli, N. and Hahn, J., 2012. Estimation of cardiac output and peripheral resistance using square-wave-approximated aortic flow signal. Frontiers in Physiology, 3. Doi: 10.3389/fphys.2012.00298.
  • Frank, O., 1899. Die Grundform des arteriellen Pulses. Z Biol, 37, 483-526.
  • Guyton, A. C., Coleman, T. G. and Granger H. J., 1972. Circulation: Overall Regulation. Annu. Rev. Physiol., 34, 13-44.
  • Guyton, A. C. and Hall, J.E., 2006. Textbook of Medical Physiology. Elseiver Inc, 11th ed.
  • Jahangir, M., 2016. Anatomy and Physiology for Health Professionals. Second Edition, Chapter 13, p.207-223, ISBN-13: 9781284036947.
  • Khoo, M. C. K., 2000. Physiological Control Systems: Analysis, Simulation, and Estimation. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Kinski, R., 1982. Applied fluid mechanics, McGrawhille.
  • Kokalari, I., Karaja, T. and Guerrisi, M., 2013. Review on lumped parameter method for modeling the blood flow in systemic arteris. J. Bimedical Science and Engineering, 6, 92-99. Doi: 10.4236/jbise.2013.61012.
  • Marieb, E. N. and Hoehn, K., 2010. Human Anatomy and Physiology. 8th ed., San Francisco: Benjamin Cummings.
  • Mei, C. C., Zhang, J. and Jing, H. X., 2018. Fluid mechanics of Windkessel effect. Medical & Biological Engineering & Computing. Doi: 10.1007/s11517-017-1775-y.
  • Oertel, H., 2005. Modelling the Human Cardiac Fluid Mechanics. University of Karlsruhe.
  • Olufsen, M. S., 2001. A One-Dimnsional Fluid Dynamic Model of the Systemic Arteries. Computational Modeling in Biological Fluid Dynamics, 167-187, Springer-Verlag New York, Inc.
  • Quarteroni, A., Veneziani, A. and Zunino, P., 2002. Mathematical and Numerical Modeling of Solute Dynamics in Blood Flow and Arterial Walls. SIAM Journal on Numerical Analysis, 39 (5), 1488-1511.
  • Selek, H. S., 2017. Elektronik-1 Analog Elektronik, 150-161.
  • URL-1, http://hyperphysics.phy-astr.gsu.edu/hbase/electric/watcir2.html. 1 Haziran 2018.
  • Westerhof, N., Lankhaar, J. and Westerhof B. E., 2009. The arterial Windkessel. Medical & Biological Engineering & Computing, 47, 131-141. Doi: 10.1007/s11517-008-0359-2.
  • Wu, Y., Allaire, P., Tao, G. and Olsen, D., 2005. Modeling, Estimation and Control of Cardiovascular Systems with A Left Ventricular Assist Device. American Control Conference.

Electrical Analogue of Arterial Blood Pressure Signals

Year 2018, , 61 - 66, 30.11.2018
https://doi.org/10.17714/gumusfenbil.432685

Abstract

In this study, we propose
an electrical circuit model that will be useful for understanding of the
mechanisms and dynamics of the human cardiovascular system,
which is considered as a complex system in the field of physiology. The
electrical circuit model, defined as the Windkessel model, plays an important
role in the observation of the characteristic effect of the blood pressure on
the arterial system. An electrical circuit model, which we have connected to
the input terminals of the Windkessel model, ensures that the mean arterial
blood pressure signals are observed within the expected range of values. The
Windkessel circuit model that we have tried to develop in this study was
constructed in a laboratory environment and the results were observed. It is
thought that this study will contribute to the literature in terms of the
development of the Windkessel model by increasing the number of parameters
involved in the models of heart and arterial system.

References

  • Abdolrazaghi, M., Navidbakhsh, M. and Hassani, K., 2010. Mathematical Modelling and electrical Analog Equilavent of the Human Cardiovascular System, Cardiovasc Eng, 10, 45-51.
  • Al-Jaafreh, M. and Al-Jumily, A., 2005. Multi Agent System for Estimation of Cardiovascular Parameters. 1st International Conference on Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering, 269-299.
  • Bora, Ş., Evren, V., Emek, S. and Çakırlar, I., 2017. Agent-based modeling and simulation of blood vessels in the cardiovascular system. Simulation: Transactions of the Society for Modeling and Simulation International, 1-16. Doi: 0037549717712602.
  • Capoccia, M., 2015. Development and Characterization of the Arterial Windkessel and Its Role During Left Ventricular Assist Device Assistance, Artificial Organs, 39 (8), 138-153.
  • Creigen, V., Ferracina, L., Hlod, A., Mourik, S., Sjauw, K., Rottschafer, V., Vellekoop, M. and Zegeling P., 2007. Modeling a Heart Pump. European Study Group Mathematics with Industry, Utrecht.
  • De Pater, L. and Van Den Berg, J.W., 1964. An Electrical Analogue of the Entire Human Circulatory System. Med. Electron. Biol. Engng., 2, 161-166.
  • Fazeli, N. and Hahn, J., 2012. Estimation of cardiac output and peripheral resistance using square-wave-approximated aortic flow signal. Frontiers in Physiology, 3. Doi: 10.3389/fphys.2012.00298.
  • Frank, O., 1899. Die Grundform des arteriellen Pulses. Z Biol, 37, 483-526.
  • Guyton, A. C., Coleman, T. G. and Granger H. J., 1972. Circulation: Overall Regulation. Annu. Rev. Physiol., 34, 13-44.
  • Guyton, A. C. and Hall, J.E., 2006. Textbook of Medical Physiology. Elseiver Inc, 11th ed.
  • Jahangir, M., 2016. Anatomy and Physiology for Health Professionals. Second Edition, Chapter 13, p.207-223, ISBN-13: 9781284036947.
  • Khoo, M. C. K., 2000. Physiological Control Systems: Analysis, Simulation, and Estimation. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Kinski, R., 1982. Applied fluid mechanics, McGrawhille.
  • Kokalari, I., Karaja, T. and Guerrisi, M., 2013. Review on lumped parameter method for modeling the blood flow in systemic arteris. J. Bimedical Science and Engineering, 6, 92-99. Doi: 10.4236/jbise.2013.61012.
  • Marieb, E. N. and Hoehn, K., 2010. Human Anatomy and Physiology. 8th ed., San Francisco: Benjamin Cummings.
  • Mei, C. C., Zhang, J. and Jing, H. X., 2018. Fluid mechanics of Windkessel effect. Medical & Biological Engineering & Computing. Doi: 10.1007/s11517-017-1775-y.
  • Oertel, H., 2005. Modelling the Human Cardiac Fluid Mechanics. University of Karlsruhe.
  • Olufsen, M. S., 2001. A One-Dimnsional Fluid Dynamic Model of the Systemic Arteries. Computational Modeling in Biological Fluid Dynamics, 167-187, Springer-Verlag New York, Inc.
  • Quarteroni, A., Veneziani, A. and Zunino, P., 2002. Mathematical and Numerical Modeling of Solute Dynamics in Blood Flow and Arterial Walls. SIAM Journal on Numerical Analysis, 39 (5), 1488-1511.
  • Selek, H. S., 2017. Elektronik-1 Analog Elektronik, 150-161.
  • URL-1, http://hyperphysics.phy-astr.gsu.edu/hbase/electric/watcir2.html. 1 Haziran 2018.
  • Westerhof, N., Lankhaar, J. and Westerhof B. E., 2009. The arterial Windkessel. Medical & Biological Engineering & Computing, 47, 131-141. Doi: 10.1007/s11517-008-0359-2.
  • Wu, Y., Allaire, P., Tao, G. and Olsen, D., 2005. Modeling, Estimation and Control of Cardiovascular Systems with A Left Ventricular Assist Device. American Control Conference.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sevcan Emek 0000-0003-2207-8418

Vedat Evren This is me 0000-0003-0274-0427

Şebnem Bora

Publication Date November 30, 2018
Submission Date June 10, 2018
Acceptance Date November 30, 2018
Published in Issue Year 2018

Cite

APA Emek, S., Evren, V., & Bora, Ş. (2018). Electrical Analogue of Arterial Blood Pressure Signals. Gümüşhane Üniversitesi Fen Bilimleri Dergisi61-66. https://doi.org/10.17714/gumusfenbil.432685