Genelleştirilmiş Kenmotsu Manifoldları Üzerinde Concircular Eğrilik Tensörü
Year 2018,
, 99 - 105, 30.11.2018
İnan Ünal
,
Ramazan Sarı
,
Aysel Turgut Vanlı
Abstract
Bu çalışmanın
amacı genelleştirilmiş Kenmotsu manifoldları üzerinde concircular eğrilik
tensörünün çalışılmasıdır. Concircular düz ve -concircular
düz genelleştirilmiş Kenmotsu manifoldları
incelenmiştir. Ayrıca -semi simetrik ve -concircular semi simetrik genelleştirilmiş
Kenmotsu manifoldları üzerine bazı sonuçlar verilmiştir.
References
- Bhatt, L. and Dube, K. K., 2003. Semi-invarnant submanifolds of r-Kenmotsu manifolds. Acta Ciencia Indica Mathematics, 29 (1), 167-172.
- Blair, D. E., Kim, J. S. and Tripathi, M., 2005. On the concircular curvature tensor of a contact metric manifold. Journal of the Korean Mathematical Society, 42 (5), 883-892.
- Blair, D. E., 2010. Riemannian geometry of contact and Symplectic Manifolds. Boston, Birkhauser, 360p.
- Falcitelli, M. and Pastore, A.M., 2006. f-structures of Kenmotsu Type. Mediterr J. Math., 3 (3-4), 549-564.
- Goldberg, S.I. and Yano, K., 1971. Globally framed f-manifolds. III. J. Math., 15, 456-474.
- Kenmotsu, K., 1972. A class of almost contact Riemannian manifolds. Tohoku Math. J. II Ser., 24, 93-103.
- Kholodenko, A.L., 2013. Applications of Contact Geometry and Topology in Physics: Singapore, World Scientific Publishing Co., 492p.
- Piti G., 2007. Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Braşov, Braşov.
- Srikantha, N. and Venkatesha, 2017. On Invariant Submanifolds of a Generalized Kenmotsu Manifold Satisfying Certain Conditions. IJMMS, 13 (1), 17-25.
- Tanno, S., 1969. The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J., 21, 21-38.
- Turgut Vanli, A. and Sari, R., 2016. Generalized Kenmotsu Manifolds. Communications in Mathematics and Applications, 7 (4), 311-328.
- Turgut Vanli, A. and Sari, R., 2015. On Semi-Invariant Submanifolds of a Generalized Kenmotsu Manifold Admitting a Semi-Symmetric Non-Metric Connection. Pure and Applied Mathematics Journal, 4 (1-2), 14-18.
- Turgut Vanli, A. and Sari, R., 2015. On Semi-Invariant Submanifolds of a Generalized Kenmotsu Manifold Admitting a Semi-Symmetric Metric Connection, Acta Universitatis Apulensis, 43, 79-92.
- Turgut Vanli, A. and Unal, I., 2017. Conformal, concircular, quasi-conformal and conharmonic flatness on normal complex contact metric manifolds. International Journal of Geometric Methods in Modern Physics, 14 (05), 1750067.
- Vanli, A. T. and Unal, I., 2017. On Complex η-Einstein Normal Complex Contact Metric Manifolds. Communications in Mathematics and Applications, 8 (3), 301-313.
- Yano, K., 1940. Concircular geometry I. Concircular transformations. Proceedings of the Imperial Academy, 16 (6), 195-200.
- Yano, K. and Kon, M., 1984. Structure on manifolds. Series in Pure Math. 3, World Scientific, Singapore.
Concircular Curvature Tensor on Generalized Kenmotsu Manifolds
Year 2018,
, 99 - 105, 30.11.2018
İnan Ünal
,
Ramazan Sarı
,
Aysel Turgut Vanlı
Abstract
The aim of the present paper is to study on concircular curvature tensor
on generalized Kenmotsu manifolds. Concircular flat and -concircular flat
generalized Kenmotsu manifolds are examined. Also some results are given
about -semi symmetric
and -concircular semi symmetric generalized
Kenmotsu manifolds.
References
- Bhatt, L. and Dube, K. K., 2003. Semi-invarnant submanifolds of r-Kenmotsu manifolds. Acta Ciencia Indica Mathematics, 29 (1), 167-172.
- Blair, D. E., Kim, J. S. and Tripathi, M., 2005. On the concircular curvature tensor of a contact metric manifold. Journal of the Korean Mathematical Society, 42 (5), 883-892.
- Blair, D. E., 2010. Riemannian geometry of contact and Symplectic Manifolds. Boston, Birkhauser, 360p.
- Falcitelli, M. and Pastore, A.M., 2006. f-structures of Kenmotsu Type. Mediterr J. Math., 3 (3-4), 549-564.
- Goldberg, S.I. and Yano, K., 1971. Globally framed f-manifolds. III. J. Math., 15, 456-474.
- Kenmotsu, K., 1972. A class of almost contact Riemannian manifolds. Tohoku Math. J. II Ser., 24, 93-103.
- Kholodenko, A.L., 2013. Applications of Contact Geometry and Topology in Physics: Singapore, World Scientific Publishing Co., 492p.
- Piti G., 2007. Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Braşov, Braşov.
- Srikantha, N. and Venkatesha, 2017. On Invariant Submanifolds of a Generalized Kenmotsu Manifold Satisfying Certain Conditions. IJMMS, 13 (1), 17-25.
- Tanno, S., 1969. The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J., 21, 21-38.
- Turgut Vanli, A. and Sari, R., 2016. Generalized Kenmotsu Manifolds. Communications in Mathematics and Applications, 7 (4), 311-328.
- Turgut Vanli, A. and Sari, R., 2015. On Semi-Invariant Submanifolds of a Generalized Kenmotsu Manifold Admitting a Semi-Symmetric Non-Metric Connection. Pure and Applied Mathematics Journal, 4 (1-2), 14-18.
- Turgut Vanli, A. and Sari, R., 2015. On Semi-Invariant Submanifolds of a Generalized Kenmotsu Manifold Admitting a Semi-Symmetric Metric Connection, Acta Universitatis Apulensis, 43, 79-92.
- Turgut Vanli, A. and Unal, I., 2017. Conformal, concircular, quasi-conformal and conharmonic flatness on normal complex contact metric manifolds. International Journal of Geometric Methods in Modern Physics, 14 (05), 1750067.
- Vanli, A. T. and Unal, I., 2017. On Complex η-Einstein Normal Complex Contact Metric Manifolds. Communications in Mathematics and Applications, 8 (3), 301-313.
- Yano, K., 1940. Concircular geometry I. Concircular transformations. Proceedings of the Imperial Academy, 16 (6), 195-200.
- Yano, K. and Kon, M., 1984. Structure on manifolds. Series in Pure Math. 3, World Scientific, Singapore.