Research Article
BibTex RIS Cite

Basit Yöntemlerle Şev Yüksekliğinin Karşılaştırmalı Analizi

Year 2019, , 600 - 609, 15.10.2019
https://doi.org/10.17714/gumusfenbil.541387

Abstract

Şev duraylılık analizi açık işletme
ve karayolu gibi birçok mühendislik işlemlerinin tasarımı için çok önemlidir. Şev
duraylılığı genellikle limit denge ve sayısal analizler ile kaya kütlesi
sınıflama sistemleri kullanılarak değerlendirilmektedir. Şev yüksekliği bu
yöntemlerin çoğunda girdi parametresi olarak kullanılmaktadır. LiDAR ve TLS
gibi ileri yöntemler pahalı ve zaman alıcıdır ve profesyonel kullanım
gerektirirler. Bu nedenle, araştırmacılar taşınabilirlikleri, ucuzlukları ve
hızlılıkları nedeniyle genellikle şev yüksekliğinin belirlenmesinde basit
yöntemlere ihtiyaç duyarlar. Bu çalışmada kaya şevlerinin yüksekliği şerit
metre, altimetre, lazer metre, klinometre ve jeolog pusulası ile
belirlenmiştir. Ölçümler dik
(90̊)
 ve eğimli şevlerden (75̊) alınmıştır. Ayrıca, eğimli
şevlerde
(45̊–90̊)
yöntemlerin mekanizmasını anlamak için laboratuvarda çeşitli modeller
geliştirilmiştir. Kullanılan yöntemlerin bulguları birbiriyle kıyaslanmış ve
yöntemlerin güvenilirliği tartışılmıştır. Yöntemlerin güçlü ve zayıf yanları
vurgulanmıştır. Bu çalışma bazı etkenlerin (ölçüm mesafesi, şev genişliği,
zeminin eğimi, şev topuğu önünde engebeli yüzey, vb.) şev yüksekliği
tahminlerini olumsuz etkilediğini göstermiştir. 

References

  • Alejano, L.R., Ferrero, A.M., Oyanguren, P.R. and Fernandes, M.I.A., 2011. Comparison of limit–equilibrium, numerical and physical models of wall slope stability. International Journal of Rock Mechanics and Mining Sciences, 48, 16–26.
  • Barton, N.R., 1976. Recent experiences with the Q system of tunnel support design. In: Bieniawski ZT (ed) Proceedings Symposium on Exploration for Rock Engineering, Johannesburg. Balkema, Rotterdam, 107–117.
  • Bellian, J.A., Kerans, C. and Jennette, D.C., 2005. Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modeling. Journal of Sedimentary Research, 75, 166-176.
  • Bieniawski, Z.T., 1989. Engineering Rock Mass Classification. Wiley, Chichester. 251 p.
  • Bye, A.R. and Bell, F.G., 2001. Stability assessment and slope design at Sandsloot open pit, South Africa. International Journal of Rock Mechanics and Mining Sciences, 38, 449–466.
  • Gürocak, Z., Alemdag, S. and Zaman, M.M., 2008. Rock slope stability and excavatability assessment of rocks at the Kapikaya Dam Site, Turkey. Engineering Geology, 96, 17–27.
  • Hack, R., 1998. Slope Stability Probability Classification, SSPC, 2nd edn. ITC, Enschede, The Netherlands, 258, ISBN 9061641543.
  • Hoek, E. and Bray, J.W., 1981. Rock Slope Engineering. 3rd edition. London, Institute of Miningand Metallurgy, 358 p.
  • ISRM (International Society for Rock Mechanics)., 1978. Comission on Standardization of Laboratory and Field Tests: Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses, International Journal of Rock Mechanics and Mining Sciences and Geomechanics, Abstracts, 15, 319-68.
  • Jenning, J.E., 1970. A Mathematical Theory for the Calculation of the Stability of Slopes in Open Cast Mines, Symposium on Planning Open Pit Mines, Balkema, August, Cape Town, Proceedings book, 87-112.
  • Kadakçı, Koca, T. and Koca, M.Y., 2014. Açık ocak albit işletmesindeki kaya şevlerinin sonlu elemanlar yöntemi kullanılarak duraylılık değerlendirmesi. Jeoloji Mühendisliği Dergisi, 38, 1, 1–18.
  • Kanik, M. And Ersoy, H., 2019. Evaluation of the engineering geological investigation of the Ayvali dam site (NE Turkey). Arabian Journal of Geosciences, 12, 89, doi:10.1007/s12517-019-4243-1.
  • Karaman, K., 2013. Kaya şev duraylılığının farklı yöntemlerle değerlendirilmesi (Ünye, Ordu). Jeoloji Mühendisliği Dergisi, 37, 27–47.
  • Karaman, K., Ercikdi, B. and Kesimal, A., 2013. The assessment of slope stability and rock excavatability in a limestone quarry. Earth Sciences Research Journal, 17, 169-181.
  • Kaya, A., Akgün, A., Karaman, K. and Bulut, F., 2015. Understanding the mechanism of a slope failure on nearby a highway tunnel route by different slope stability analysis methods: A case from NE Turkey. Bulletin of Engineering Geology and the Environment, 75, 945–958.
  • Kesimal, A., Ercikdi, B. and Cihangir, F., 2008. Environmental impacts of blast-induced acceleration on slope instability at a limestone quarry. Environmental Geology, 54, 381-389.
  • Laubscher, D.H., 1990. Ageomechanics classification system for rating of rock mass in mine design. Journal of the South African Institute of Mining and Metallurgy, 90, 10, 257–273.
  • Lewis, C.D., 1982. International and Business Forecasting Methods. Butterworths, London.
  • Mohamed, T., Kasa, A. And Taha, M.R., 2012. Fuzzy logic system for slope stability prediction, International Journal on Advanced Science Engineering Information Technology, 2, 38–42.
  • Nguyen, H.T., Fernandez-Steeger T.M., Wiatr, T., Rodrigues, D. and Azzam, R., 2011. Use of terrestrial laser scanning for engineering geological applications on volcanic rock slopes – an example from Madeira island (Portugal). Natural Hazards and Earth System Sciences, 11, 807–817.
  • Priest, S.D. and Hudson, J.A., 1981. Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract, 118, 183–197.
  • Rosser, N.J., Petley, D.N., Lim, M., Dunning, S.A. and Allison, R.J., 2005. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Quarterly Journal of Engineering Geology and Hydrogeology, 38, 4, 363-375.
  • Ulusay, R. and Sönmez, H., 2007. Kaya Kütlelerinin Mühendislik Özellikleri, 2. Baskı, Jeoloji Mühendisleri Odası, Ankara, 292s.

A Comparative Analysis of Slope Height Using Simple Methods

Year 2019, , 600 - 609, 15.10.2019
https://doi.org/10.17714/gumusfenbil.541387

Abstract

Analysis of
slope stability is crucial for the design of many engineering processes such as
open pit mine and highway. Slope stability is generally evaluated by limit
equilibrium and numerical analyses, and rock mass classification systems. The
slope height is used as the input parameter in many of these methods. Advanced
methods such as LiDAR and TLS are expensive and time consuming and they require
professional use. Therefore, researchers generally need to use simple methods
for the measurement of slope height because of their
cheapness,
rapidity and portability. In this study, height of the rock slopes was
determined with tape line, laser meter, altimeter, clinometer and geological
compass. Measurements were taken from steep (90̊) and inclined slopes (75̊).
Further, various models were developed in the laboratory for understanding the
mechanism of methods in inclined slopes (45̊–90̊). The findings of methods used
compared with each other and the reliability of the methods was discussed. Strengths
and weakness of the methods were highlighted. This study indicated that some
factors (measurement distance, slope width, the inclination of the ground,
rugged surface in toe of the slope, etc.) can
negatively affect the estimations of slope height. 

References

  • Alejano, L.R., Ferrero, A.M., Oyanguren, P.R. and Fernandes, M.I.A., 2011. Comparison of limit–equilibrium, numerical and physical models of wall slope stability. International Journal of Rock Mechanics and Mining Sciences, 48, 16–26.
  • Barton, N.R., 1976. Recent experiences with the Q system of tunnel support design. In: Bieniawski ZT (ed) Proceedings Symposium on Exploration for Rock Engineering, Johannesburg. Balkema, Rotterdam, 107–117.
  • Bellian, J.A., Kerans, C. and Jennette, D.C., 2005. Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modeling. Journal of Sedimentary Research, 75, 166-176.
  • Bieniawski, Z.T., 1989. Engineering Rock Mass Classification. Wiley, Chichester. 251 p.
  • Bye, A.R. and Bell, F.G., 2001. Stability assessment and slope design at Sandsloot open pit, South Africa. International Journal of Rock Mechanics and Mining Sciences, 38, 449–466.
  • Gürocak, Z., Alemdag, S. and Zaman, M.M., 2008. Rock slope stability and excavatability assessment of rocks at the Kapikaya Dam Site, Turkey. Engineering Geology, 96, 17–27.
  • Hack, R., 1998. Slope Stability Probability Classification, SSPC, 2nd edn. ITC, Enschede, The Netherlands, 258, ISBN 9061641543.
  • Hoek, E. and Bray, J.W., 1981. Rock Slope Engineering. 3rd edition. London, Institute of Miningand Metallurgy, 358 p.
  • ISRM (International Society for Rock Mechanics)., 1978. Comission on Standardization of Laboratory and Field Tests: Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses, International Journal of Rock Mechanics and Mining Sciences and Geomechanics, Abstracts, 15, 319-68.
  • Jenning, J.E., 1970. A Mathematical Theory for the Calculation of the Stability of Slopes in Open Cast Mines, Symposium on Planning Open Pit Mines, Balkema, August, Cape Town, Proceedings book, 87-112.
  • Kadakçı, Koca, T. and Koca, M.Y., 2014. Açık ocak albit işletmesindeki kaya şevlerinin sonlu elemanlar yöntemi kullanılarak duraylılık değerlendirmesi. Jeoloji Mühendisliği Dergisi, 38, 1, 1–18.
  • Kanik, M. And Ersoy, H., 2019. Evaluation of the engineering geological investigation of the Ayvali dam site (NE Turkey). Arabian Journal of Geosciences, 12, 89, doi:10.1007/s12517-019-4243-1.
  • Karaman, K., 2013. Kaya şev duraylılığının farklı yöntemlerle değerlendirilmesi (Ünye, Ordu). Jeoloji Mühendisliği Dergisi, 37, 27–47.
  • Karaman, K., Ercikdi, B. and Kesimal, A., 2013. The assessment of slope stability and rock excavatability in a limestone quarry. Earth Sciences Research Journal, 17, 169-181.
  • Kaya, A., Akgün, A., Karaman, K. and Bulut, F., 2015. Understanding the mechanism of a slope failure on nearby a highway tunnel route by different slope stability analysis methods: A case from NE Turkey. Bulletin of Engineering Geology and the Environment, 75, 945–958.
  • Kesimal, A., Ercikdi, B. and Cihangir, F., 2008. Environmental impacts of blast-induced acceleration on slope instability at a limestone quarry. Environmental Geology, 54, 381-389.
  • Laubscher, D.H., 1990. Ageomechanics classification system for rating of rock mass in mine design. Journal of the South African Institute of Mining and Metallurgy, 90, 10, 257–273.
  • Lewis, C.D., 1982. International and Business Forecasting Methods. Butterworths, London.
  • Mohamed, T., Kasa, A. And Taha, M.R., 2012. Fuzzy logic system for slope stability prediction, International Journal on Advanced Science Engineering Information Technology, 2, 38–42.
  • Nguyen, H.T., Fernandez-Steeger T.M., Wiatr, T., Rodrigues, D. and Azzam, R., 2011. Use of terrestrial laser scanning for engineering geological applications on volcanic rock slopes – an example from Madeira island (Portugal). Natural Hazards and Earth System Sciences, 11, 807–817.
  • Priest, S.D. and Hudson, J.A., 1981. Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract, 118, 183–197.
  • Rosser, N.J., Petley, D.N., Lim, M., Dunning, S.A. and Allison, R.J., 2005. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Quarterly Journal of Engineering Geology and Hydrogeology, 38, 4, 363-375.
  • Ulusay, R. and Sönmez, H., 2007. Kaya Kütlelerinin Mühendislik Özellikleri, 2. Baskı, Jeoloji Mühendisleri Odası, Ankara, 292s.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kadir Karaman 0000-0002-3831-4465

Publication Date October 15, 2019
Submission Date March 18, 2019
Acceptance Date May 23, 2019
Published in Issue Year 2019

Cite

APA Karaman, K. (2019). Basit Yöntemlerle Şev Yüksekliğinin Karşılaştırmalı Analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(4), 600-609. https://doi.org/10.17714/gumusfenbil.541387