Research Article
BibTex RIS Cite

Askorbik Asit’in Amperometrik Tayini için Esnek, Serbest Duran Nikel Sülfür Temelli Grafen Kağıt Elektrotun Geliştirilmesi

Year 2020, , 60 - 75, 15.01.2020
https://doi.org/10.17714/gumusfenbil.562556

Abstract

Esnek, serbest duran ve dayanıklı nikel
sülfür/indirgenmiş grafen oksit (NiS/rGO) kompozit kağıt elektrot, rGO kağıt
elektrot yüzeyinde NiS yapılarının basit bir elektrokimyasal depozisyonuyla
hazırlanmıştır. NiS/rGO kompozit kağıt elektrot taramalı elektron mikroskopisi
(SEM), X-ışınları fotoelektron spektroskopisi (XPS), X-ışınları kırınım
difraksiyonu (XRD) , Raman spektroskopisi ve elektrokimyasal empedans
spektroskopisi (EIS) gibi teknikler kullanılarak karakterize edilmiştir.
Hazırlanan NiS/rGO kompozit kağıt, askorbik asitin (AA) elektrokimyasal tayininde
kullanılmıştır. NiS/rGO kompozit kağıt
elektrot
yüzeyinde bulunan top benzeri NiS nano yapılarının, oldukça büyük aktif yüzey
alanı sağladığı için kağıt elektrotun katalitik performansını büyük ölçüde artırdığı
belirlenmiştir. AA, NiS/rGO kompozit kağıt üzerinde geniş lineer aralıkta (1.0-800
µM), düşük tayin limitinde (0.7 µM) ve yüksek seçicilikle tayin edilmiştir.
Bunun yanı sıra yapılan elektrokimyasal testler sonucu kompozit kağıt elektrodun
oldukça kararlı, esnek ve atmosfer koşullarına dayanıklı olduğu ortaya
konmuştur.

References

  • Aksu, Z. ve Alanyalıoğlu, M., 2017. Fabrication of free-standing reduced graphene oxide composite papers doped with different dyes and comparison of their electrochemical performance for electrocatalytical oxidation of nitrite. Electrochimica Acta, 258,1376-1386.
  • Anu Prathap, M.U. ve Srivastava, R., 2013. Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan. Sensors and Actuators B, 177, 239-250.
  • Arumugam, N. ve Kim J.S., 2018. Quantum dots attached to graphene oxide for sensitive detection of ascorbic acid in aqueous solutions. Materials Science and Engineering C, 92, 720-725.
  • Bao, Y., Song, J., Mao, Y., Han, D., Yang, F., Niu, L. ve Ivaska, A., 2011. Graphene Oxide-Templated Polyaniline Microsheets toward Simultaneous Electrochemical Determination of AA/DA/UA. Electroanalysis, 23, 4, 878-884.
  • Chen, H., Liu Y., Li, H., Zhang, Y. ve Yao, S., 2019. Non-oxidation reduction strategy for highly selective detection of ascorbic acid with dual-ratio fluorescence and colorimetric signals. Sensors and Actuators: B. Chemical, 281, 983-988.
  • Chen, J., Ge, J., Zhang, L., Li, Z., Li, J., Sun, Y. ve Qu, L., 2016. Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid. Microchimica Acta, 183,1847-1853.
  • Dağcı, K. ve Alanyalıoğlu, M., 2016. Preparation of Free-Standing and Flexible Graphene/Ag Nanoparticles/Poly(pyronin Y) Hybrid Paper Electrode for Amperometric Determination of Nitrite. ACS Applied Materials Interfaces, 8, 2713-2722.
  • Dagci Kiransan, K., Topcu, E. ve Alanyalioğlu, M., 2016. Surface-Confined Electropolymerization of Pyronin Y in the Graphene Composite Paper Structure for Ampeormetric Determination of Dopamine. Journal of Applied Polymer Science, 45139,1-10.
  • Dağcı Kıranşan, K. ve Topçu, E., 2018. Free-standing and Flexible MoS2/rGO Paper Electrode for Amperometric Detection of Folic Acid, Electroanalysis. 30, 810-818.
  • Dağcı Kiranşan, K., Aksoy, M. ve Topçu, E., 2018. Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications, Materials Research Bulletin. 106, 57–65.
  • Gheibi, S., Karimi-Maleh, H., Khalilzadeh, M.A. ve Bagheri, H., 2015. A new voltammetric sensor for electrocatalytic determination of vitamin C in fruit juices and fresh vegetable juice using modified multi-wall carbon nanotubes paste electrode. Journal of Food Science Technology, 52(1), 276-284.
  • Gupta, V.K., Jain, A.K. ve Shoora, S.K., 2013. Multiwall carbon nanotube modified glassy carbon electrode as voltammetric sensor for the simultaneous determination of ascorbic acid and caffeine. Electrochimica Acta, 93, 248-253.
  • Harraz, F.A., Faisal, M., Al-Salami, A.E., El-Toni, A.M., Almadiy, A.A., Al-Sayari, S.A. ve Al-Assiri, M.S., 2019. Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid. Materials Letters, 234, 96-100.
  • He, W., Ding, Y., Zhang, W., Ji, L., Zhang, X. ve Yang, F., 2016. A highly sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid based on ultra-small Ni nanoparticles. Journal of Electroanalytical Chemistry, 775, 205-211.
  • Hummers, W.S ve Offeman, R.E., 1958. Preparation of graphitic oxide.Journal of the American Chemical Society, 80, 1339-1339.
  • Huo, J., Wu, J., Zheng, M., Tu, Y. ve Lan, Z., 2015. Effect of ammonia on electrodeposition of cobalt sulfide and nickel sulfide counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 180,574-580.
  • Kaplan, İ.H., Dağcı, K. ve Alanyalıoğlu, M., 2010. Nucleation and Growth Mechanism of Electropolymerization of Methylene Blue: The Effect of Preparation Potential on Poly(methylene blue) Structure. Electroanalysis, 22, 2694-2701.
  • Karimi-Maleh, H., Moazampour, M., Yoosefian, M., Sanati, A.L. Tahernejad-Javazmi, F. ve Mahani, M., 2014. An Electrochemical Nanosensor for Simultaneous Voltammetric Determination of Ascorbic Acid and Sudan I in Food Samples. Food Analytical Methods, 7, 2169-2176. Kim, W.S., Dahlgren, R.L., Moroz, L.L ve Sweedler, J.V., 2002. Ascorbic acid assays of individual neurons and neuronal tissues using capillary electrophoresis with laserinduced fluorescence detection. Analytical Chemistry, 74, 5614-5620.
  • Koblová, P., Sklenářová, H., Brabcová, I. ve Solich, P., 2012. Development and validation of a rapid HPLC method for the determination of ascorbic acid, phenylephrine, paracetamol and caffeine using a monolithic column. Analttical Methods, 4, 1588-1591.
  • Kumar, M.A., Lakshminarayanan, V. ve Ramamurthy, S.S., 2019. Platinum nanoparticles decorated graphene-modified glassy carbon electrode toward the electrochemical determination of ascorbic acid, dopamine, and paracetamol. Comptes Rendus Chimie, 22, 58-72.
  • Li, Y., Zhang, H.X., Liu, F.T., Dong, X.F., Li, X. ve Wang, C.W., 2019. New design of oriented NiS nanoflower arrays as platinum-free electrode for high-efficient dye-sensitized solar cells. Superlattices and Microstructures, 125, 66-71.
  • Lin, K.C., Tsai, T.H. ve Chen, S.M., 2010. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film. Biosensors and Bioelectronics, 26, 608-614.
  • Liu, B., Luo, L., Ding, Y., Si, X., Wei, Y., Ouyang, X. ve Xu, D., 2014. Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode. Electrochimica Acta, 142, 336-342.
  • Liu, H., Li, N., Zhang, H., Zhang, F. ve Su, X., 2018. A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots. Talanta, 189, 190-195.
  • Luo, P., Zhang, H., Liu, L., Zhang, Y., Deng, J., Xu, C., Hu, N. ve Wang, Y., 2017. Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the Applications for the Enhanced Water Splitting System, ACS Applied Materials Interfaces. 9, 2500-2508.
  • Ma, Z., Yuan, X., Zhang, Z., Mei, D., Li, L., Ma, Z.F., Zhang, L., Yang, J. ve Zhang, J., 2015. Novel Flower-like Nickel Sulfide as an Efficient Electrocatalyst for Nonaqueous Lithium-Air Batteries. Scientific Reports, 5, 18199.
  • May, B.M.M., Parani, S. ve Oluwafemi, O.S.,2019. Detection of ascorbic acid using green synthesized AgInS2 quantum dots. Materials Letters, 236, 432-435.
  • Peng, J., Ling, J., Zhang, X.Q., Zhang, L.Y., Cao, Q.E. ve Ding, Z.T., 2015. A rapid, sensitive and selective colorimetric method for detection of ascorbic acid. Sensors and Actuators B.Chemical, 221,708-716.
  • Rather, M.A., Bhat, S.A., Pandit S.A., Rather, G.M., Khan, K.Z. ve Bhat M.A., 2017. Imidazolium Based Surface Active Ionic Liquids as Novel Micellar Media for Simultaneous and Sensitive Electrochemical Detection of Dopamine and Ascorbic Acid. Electroanalysis, 29, 1772-1782.
  • Salavati-Niasari, M., Davar, F. ve Emadi, H., 2010. Hierarchical Nanostructured Nickel Sulfıde Architectures Through Simple Hydrothermal Method in the Presence of Thioglycolic Acid. Chalcogenide Letters, 7, 12, 647-655.
  • Sun, C.L., Chang, C.T., Lee, H.H., Zhou, J., Wang, J., Sham, T.K. ve Pong, W.F., 2011. Microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5, 7788-7795.
  • Thearle R.A., Latiff, N.M., Sofer, Z., Mazanek, V. ve Pumera M., 2017. Boron and Nitrogen Doped Graphene via Microwave Exfoliation for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. Electroanalysis, 29, 45-50.
  • Topçu, E. ve Dağcı Kıranşan, K., 2018. Flexible and Free-standing PtNLs-MoS2/Reduced Graphene Oxide Composite Paper: A High-Performance Rolled Paper Catalyst for Hydrogen Evolution Reaction. ChemistrySelect, 3, 5941-5949.
  • Topçu, E., Dağcı, K. ve Alanyalıoğlu, M., 2016. Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH. Electroanalysis, 28, 1-13.
  • Tran, V.C., Sahoo, S. ve Shim, J.J., 2018. Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes. Materials Letters, 210, 105-108.
  • Wang, C., Du, J., Wang, H., Zou, C., Jiang, F., Yang, P. ve Du, Y., 2014. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B, 204, 302-309.
  • Wang, Z., Teng, X. ve Lu, C., 2012. Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid. Analyst, 137,1876-1881.
  • Xie, H., Fu, Y., Zhang, Q., Yan,K., Yang, R., Mao, K., Chu,P. K., Liu, L. ve Wu, X., 2019.Selective and high-sensitive label-free detection of ascorbic acid by carbon nitride quantum dots with intense fluorescence from lone pair states. Talanta, 196, 530-536.
  • Xie, Y.L., Yuan, J., Ye, H.L., Song, P. ve Hu, S.Q., 2015. Facile ultrasonic synthesis of graphene/SnO2 nanocomposite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid, and uric acid. Journal of Electroanalytical Chemistry, 749, 26-30.
  • Zhang, X., Zhang, Y.C. ve Ma, L.X., 2016. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection ofascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 227, 488-496.

Development of Flexible, Free-Standing Nickel Sulfide Based Graphene Paper Electrode for Amperometric Determination of Ascorbic Acid

Year 2020, , 60 - 75, 15.01.2020
https://doi.org/10.17714/gumusfenbil.562556

Abstract

The flexible, free-standing and durable highly rough
NiS/rGO composite paper electrode was prepared with a simple electrochemical
deposition of NiS structures on the surface of the rGO paper electrode.  NiS/rGO composite paper electrode was
characterized by using scanning electron microscopy (SEM), X-ray photoelectron
spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy and
electrochemical impedance spectroscopy (EIS) techniques. As-prepared NiS/rGO
composite paper was used for the electrochemical detection of ascorbic acid
(AA). The rough and the
ball-like NiS nanostructures on the rGO paper electrode surface
greatly increased the catalytic performance of the paper electrode by providing
a large active surface area. AA was detected on NiS/rGO composite paper with a
wide linear range from 1.0 to 800 µM, a low detection limit of 0.7 µM (S/N=3) and
a high sensitivity. Besides, the electrochemical tests showed that the
composite paper electrode is very stable, flexible and durable at the
atmospheric conditions.

References

  • Aksu, Z. ve Alanyalıoğlu, M., 2017. Fabrication of free-standing reduced graphene oxide composite papers doped with different dyes and comparison of their electrochemical performance for electrocatalytical oxidation of nitrite. Electrochimica Acta, 258,1376-1386.
  • Anu Prathap, M.U. ve Srivastava, R., 2013. Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan. Sensors and Actuators B, 177, 239-250.
  • Arumugam, N. ve Kim J.S., 2018. Quantum dots attached to graphene oxide for sensitive detection of ascorbic acid in aqueous solutions. Materials Science and Engineering C, 92, 720-725.
  • Bao, Y., Song, J., Mao, Y., Han, D., Yang, F., Niu, L. ve Ivaska, A., 2011. Graphene Oxide-Templated Polyaniline Microsheets toward Simultaneous Electrochemical Determination of AA/DA/UA. Electroanalysis, 23, 4, 878-884.
  • Chen, H., Liu Y., Li, H., Zhang, Y. ve Yao, S., 2019. Non-oxidation reduction strategy for highly selective detection of ascorbic acid with dual-ratio fluorescence and colorimetric signals. Sensors and Actuators: B. Chemical, 281, 983-988.
  • Chen, J., Ge, J., Zhang, L., Li, Z., Li, J., Sun, Y. ve Qu, L., 2016. Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid. Microchimica Acta, 183,1847-1853.
  • Dağcı, K. ve Alanyalıoğlu, M., 2016. Preparation of Free-Standing and Flexible Graphene/Ag Nanoparticles/Poly(pyronin Y) Hybrid Paper Electrode for Amperometric Determination of Nitrite. ACS Applied Materials Interfaces, 8, 2713-2722.
  • Dagci Kiransan, K., Topcu, E. ve Alanyalioğlu, M., 2016. Surface-Confined Electropolymerization of Pyronin Y in the Graphene Composite Paper Structure for Ampeormetric Determination of Dopamine. Journal of Applied Polymer Science, 45139,1-10.
  • Dağcı Kıranşan, K. ve Topçu, E., 2018. Free-standing and Flexible MoS2/rGO Paper Electrode for Amperometric Detection of Folic Acid, Electroanalysis. 30, 810-818.
  • Dağcı Kiranşan, K., Aksoy, M. ve Topçu, E., 2018. Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications, Materials Research Bulletin. 106, 57–65.
  • Gheibi, S., Karimi-Maleh, H., Khalilzadeh, M.A. ve Bagheri, H., 2015. A new voltammetric sensor for electrocatalytic determination of vitamin C in fruit juices and fresh vegetable juice using modified multi-wall carbon nanotubes paste electrode. Journal of Food Science Technology, 52(1), 276-284.
  • Gupta, V.K., Jain, A.K. ve Shoora, S.K., 2013. Multiwall carbon nanotube modified glassy carbon electrode as voltammetric sensor for the simultaneous determination of ascorbic acid and caffeine. Electrochimica Acta, 93, 248-253.
  • Harraz, F.A., Faisal, M., Al-Salami, A.E., El-Toni, A.M., Almadiy, A.A., Al-Sayari, S.A. ve Al-Assiri, M.S., 2019. Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid. Materials Letters, 234, 96-100.
  • He, W., Ding, Y., Zhang, W., Ji, L., Zhang, X. ve Yang, F., 2016. A highly sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid based on ultra-small Ni nanoparticles. Journal of Electroanalytical Chemistry, 775, 205-211.
  • Hummers, W.S ve Offeman, R.E., 1958. Preparation of graphitic oxide.Journal of the American Chemical Society, 80, 1339-1339.
  • Huo, J., Wu, J., Zheng, M., Tu, Y. ve Lan, Z., 2015. Effect of ammonia on electrodeposition of cobalt sulfide and nickel sulfide counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 180,574-580.
  • Kaplan, İ.H., Dağcı, K. ve Alanyalıoğlu, M., 2010. Nucleation and Growth Mechanism of Electropolymerization of Methylene Blue: The Effect of Preparation Potential on Poly(methylene blue) Structure. Electroanalysis, 22, 2694-2701.
  • Karimi-Maleh, H., Moazampour, M., Yoosefian, M., Sanati, A.L. Tahernejad-Javazmi, F. ve Mahani, M., 2014. An Electrochemical Nanosensor for Simultaneous Voltammetric Determination of Ascorbic Acid and Sudan I in Food Samples. Food Analytical Methods, 7, 2169-2176. Kim, W.S., Dahlgren, R.L., Moroz, L.L ve Sweedler, J.V., 2002. Ascorbic acid assays of individual neurons and neuronal tissues using capillary electrophoresis with laserinduced fluorescence detection. Analytical Chemistry, 74, 5614-5620.
  • Koblová, P., Sklenářová, H., Brabcová, I. ve Solich, P., 2012. Development and validation of a rapid HPLC method for the determination of ascorbic acid, phenylephrine, paracetamol and caffeine using a monolithic column. Analttical Methods, 4, 1588-1591.
  • Kumar, M.A., Lakshminarayanan, V. ve Ramamurthy, S.S., 2019. Platinum nanoparticles decorated graphene-modified glassy carbon electrode toward the electrochemical determination of ascorbic acid, dopamine, and paracetamol. Comptes Rendus Chimie, 22, 58-72.
  • Li, Y., Zhang, H.X., Liu, F.T., Dong, X.F., Li, X. ve Wang, C.W., 2019. New design of oriented NiS nanoflower arrays as platinum-free electrode for high-efficient dye-sensitized solar cells. Superlattices and Microstructures, 125, 66-71.
  • Lin, K.C., Tsai, T.H. ve Chen, S.M., 2010. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film. Biosensors and Bioelectronics, 26, 608-614.
  • Liu, B., Luo, L., Ding, Y., Si, X., Wei, Y., Ouyang, X. ve Xu, D., 2014. Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode. Electrochimica Acta, 142, 336-342.
  • Liu, H., Li, N., Zhang, H., Zhang, F. ve Su, X., 2018. A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots. Talanta, 189, 190-195.
  • Luo, P., Zhang, H., Liu, L., Zhang, Y., Deng, J., Xu, C., Hu, N. ve Wang, Y., 2017. Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the Applications for the Enhanced Water Splitting System, ACS Applied Materials Interfaces. 9, 2500-2508.
  • Ma, Z., Yuan, X., Zhang, Z., Mei, D., Li, L., Ma, Z.F., Zhang, L., Yang, J. ve Zhang, J., 2015. Novel Flower-like Nickel Sulfide as an Efficient Electrocatalyst for Nonaqueous Lithium-Air Batteries. Scientific Reports, 5, 18199.
  • May, B.M.M., Parani, S. ve Oluwafemi, O.S.,2019. Detection of ascorbic acid using green synthesized AgInS2 quantum dots. Materials Letters, 236, 432-435.
  • Peng, J., Ling, J., Zhang, X.Q., Zhang, L.Y., Cao, Q.E. ve Ding, Z.T., 2015. A rapid, sensitive and selective colorimetric method for detection of ascorbic acid. Sensors and Actuators B.Chemical, 221,708-716.
  • Rather, M.A., Bhat, S.A., Pandit S.A., Rather, G.M., Khan, K.Z. ve Bhat M.A., 2017. Imidazolium Based Surface Active Ionic Liquids as Novel Micellar Media for Simultaneous and Sensitive Electrochemical Detection of Dopamine and Ascorbic Acid. Electroanalysis, 29, 1772-1782.
  • Salavati-Niasari, M., Davar, F. ve Emadi, H., 2010. Hierarchical Nanostructured Nickel Sulfıde Architectures Through Simple Hydrothermal Method in the Presence of Thioglycolic Acid. Chalcogenide Letters, 7, 12, 647-655.
  • Sun, C.L., Chang, C.T., Lee, H.H., Zhou, J., Wang, J., Sham, T.K. ve Pong, W.F., 2011. Microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5, 7788-7795.
  • Thearle R.A., Latiff, N.M., Sofer, Z., Mazanek, V. ve Pumera M., 2017. Boron and Nitrogen Doped Graphene via Microwave Exfoliation for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. Electroanalysis, 29, 45-50.
  • Topçu, E. ve Dağcı Kıranşan, K., 2018. Flexible and Free-standing PtNLs-MoS2/Reduced Graphene Oxide Composite Paper: A High-Performance Rolled Paper Catalyst for Hydrogen Evolution Reaction. ChemistrySelect, 3, 5941-5949.
  • Topçu, E., Dağcı, K. ve Alanyalıoğlu, M., 2016. Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH. Electroanalysis, 28, 1-13.
  • Tran, V.C., Sahoo, S. ve Shim, J.J., 2018. Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes. Materials Letters, 210, 105-108.
  • Wang, C., Du, J., Wang, H., Zou, C., Jiang, F., Yang, P. ve Du, Y., 2014. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B, 204, 302-309.
  • Wang, Z., Teng, X. ve Lu, C., 2012. Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid. Analyst, 137,1876-1881.
  • Xie, H., Fu, Y., Zhang, Q., Yan,K., Yang, R., Mao, K., Chu,P. K., Liu, L. ve Wu, X., 2019.Selective and high-sensitive label-free detection of ascorbic acid by carbon nitride quantum dots with intense fluorescence from lone pair states. Talanta, 196, 530-536.
  • Xie, Y.L., Yuan, J., Ye, H.L., Song, P. ve Hu, S.Q., 2015. Facile ultrasonic synthesis of graphene/SnO2 nanocomposite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid, and uric acid. Journal of Electroanalytical Chemistry, 749, 26-30.
  • Zhang, X., Zhang, Y.C. ve Ma, L.X., 2016. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection ofascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 227, 488-496.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kader Dağcı Kıranşan 0000-0002-0764-9393

Publication Date January 15, 2020
Submission Date May 9, 2019
Acceptance Date October 8, 2019
Published in Issue Year 2020

Cite

APA Dağcı Kıranşan, K. (2020). Askorbik Asit’in Amperometrik Tayini için Esnek, Serbest Duran Nikel Sülfür Temelli Grafen Kağıt Elektrotun Geliştirilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(1), 60-75. https://doi.org/10.17714/gumusfenbil.562556