Research Article
BibTex RIS Cite

Rhodobacter sphaeroides O.U.001'den Biyoteknolojik Olarak Üretilen Karotenoidlerin Antioksidan ve Sitotoksik Etkilerinin Araştırılması

Year 2020, , 559 - 568, 15.07.2020
https://doi.org/10.17714/gumusfenbil.597048

Abstract

Karotenoidler güçlü antioksidan özelliklerinden dolayı dikkat
çekmektedirler. Bu çalışmada, Rhodobacter sphaeroides O.U. 001'den ekstrakte
edilen karotenoidlerin antioksidan ve antiproliferatif etkileri araştırıldı.
Bunun için, R. sphaeroides O.U. 001 önce 5 L'lik bir biyoreaktörde çoğaltıldı.
Daha sonra, çözücü olarak aseton kullanılarak R. sphaeroides O.U.001'den
karotenoidler ekstrakte edildi. Karotenoid ekstraktının, vinkristin ve paklitaksele
dirençli hücrelerin (MCF-7/Vinc, MCF-7/Pac) proliferasyonuna etkileri MTT sitotoksisite
testi ile araştırıldı. Karotenoid ekstraktı ve kanser ilaçları arasındaki
etkileşimin hücreler üzerindeki etkisi dama tahtası plaka tekniği ile
değerlendirildi. Karotenoid ekstraktın antioksidan aktivitesi ise 2, 2 -
difenil, 1-pikril hidrazil (DPPH) radikal süpürücü aktivite tayin yöntemi ile
belirlendi. Ekstraksiyon sonucunda, önemli miktarda karotenoid verimi elde
edildi (80.69 mg karotenoid/g kuru hücre ağırlığı). Karotenoid ekstraktının
hücre proliferasyonu üzerinde inhibitör etkisinin olmadığı ve antikanser
ilaçlarla etkileşiminin antagonistik olduğu bulundu. Bunlara ek olarak, elde
edilen karotenoid ekstraktının DPPH antioksidan etkisi, (IC50 değeri)
25 µg/mL olarak hesaplandı. Sonuç olarak, biyoteknolojik yolla üretilen bakteriyel
karotenoidlerin, kanser hücrelerinde sitotoksik etki göstermeden önemli
antioksidan aktiviteye sahip oldukları gösterilmiştir.

Supporting Institution

TÜBİTAK

Project Number

110T552

Thanks

We would like to thank Prof. Dr. Samuel Kaplan (The University of Texas Health Science Center at Houston) for giving permission to use carotenoid images.

References

  • Aksu, Z. and Eren, A.T., 2005. Carotenoids Production by the Yeast Rhodotorula mucilaginosa: Use of Agricultural Wastes as a Carbon Source. Process Biochemistry, 40, 2985–2991.
  • Armstrong, A.G., 1994. Eubacteria Show Their True Colors: Genetics of Carotenoid Pigment Biosynthesis from Microbes to Plants. Journal of Bacteriology, 176, 4795-4802.
  • Carvalho, L.M.J., Gomes, P.B., Godoy, R.L.O., Pacheco, S., Monte, P.H.F., Carvalho, J.L.V., Nutti, M.R., Neves, A.C.L., Vieira, A.C.R.A. and Ramos, S.R.R., 2012. Total Carotenoid Content, α-Carotene and β-Carotene, of Landrace Pumpkins (Cucurbita moschata Duch): A Preliminary Study. Food Research International, 47, 337-340.
  • Diouf, P.N., Stevanovic, T. and Cloutier, A., 2009. Antioxidant Properties and Polyphenol Contents of Trembling Aspen Bark Extracts. Wood Science and Technology, 43, 457-470.
  • Fong, W.F., Wang, C., Zhu, G.Y., Leung, C.H., Yang, M.S. and Cheung, H.Y., 2007. Reversal of Multidrug Resistance in Cancer Cells by Rhizoma alismatis Extract. Phytomedicine, 14, 160-165.
  • Fraser, J.N., Hashimoto, H. and Cogdell, J.R., 2001. Carotenoids and Bacterial Photosynthesis: The Story So Far. Photosynthesis Research, 70, 249-256.
  • Gu, Z., Chen, D., Han, Y., Chen, Z. and Gu, F., 2008. Optimization of Carotenoids Extraction from Rhodobacter sphaeroides. LWT-Food Science and Technology, 41, 1082-1088.
  • Jambun, D.D., Ong, K.S., Lim, Y.Y., Tan, J.B.L., Lee, W.L., Muhamad, A., Yap, S.W. and Lee, S.M., 2018. Antioxidant Properties of Etlingera pubescens, an Edible Ginger Plant Endemic to Borneo. Food Bioscience, 25, 44-51.
  • Joshi, H.M. and Tabita, F.R., 1996. A Global Two Component Signal Transduction System That Integrates the Control of Photosynthesis, Carbon Dioxide Assimilation, and Nitrogen Fixation. Proceedings of the National Academy of Sciences, 93, 14515-14520.
  • Kars, G. and Alparslan, Ü., 2013. Valorization of Sugar Beet Molasses for the Production of Biohydrogen and 5-Aminolevulinic Acid by Rhodobacter sphaeroides O.U. 001 in a Biorefinery Concept. International Journal of Hydrogen Energy, 38, 14488-14494.
  • Kars, G. and Gündüz, U., 2010. Towards a Super H2 Producer: Improvements in Photofermentative Biohydrogen Production by Genetic Manipulations. International Journal of Hydrogen Energy, 35, 6646-6656.
  • Kars, G., Gündüz, U., Yücel, M., Rakhely, G., Kovacs, K.L. and Eroğlu, İ., 2009. Evaluation of Hydrogen Production by Rhodobacter sphaeroides O.U. 001 and Its hupSL Deficient Mutant Using Acetate and Malate as Carbon Sources. International Journal of Hydrogen Energy, 34, 2184-2190.
  • Kars, M.D., İşeri, O.D., Gündüz, U. and Molnár, J., 2008. Reversal of MDR by Synthetic and Natural Compounds in Drug Resistant MCF-7 Cell Lines. Chemotherapy, 54, 194-200.
  • Kwon, S.Y., Jiang, S.N., Zheng, J.H., Choy, H.E. and Min, J.J., 2014. Rhodobacter sphaeroides, a Novel Tumor-Targeting Bacteria That Emits Natural Near-Infrared Fluorescence. Microbiology and Immunology, 58, 172-179.
  • Lang, H.P., Cogdell, R.J., Takaichi, S. and Hunter, C.N., 1995. Complete DNA Sequence, Specific Tn5 Insertion Map, and Gene Assignment of the Carotenoid Biosynthesis Pathway of Rhodobacter sphaeroides. Journal of Bacteriology, 177, 2064-2073.
  • Li, C., Swofford, C.A. and Sinskey, A.J., 2020. Modular Engineering for Microbial Production of Carotenoids. Metabolic Engineering Communications, 10, e00118.
  • Macias-Sanchez, M.D., Mantell, C., Rodriguez, M., Martinez de la Ossa, E., Lubián, L.M. and Montero, O., 2005. Supercritical Fluid Extraction of Carotenoids and Chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66, 245-251.
  • Menon, V. and Rao, M., 2012. Trends in Bioconversion of Lignocellulose: Biofuels, Platform Chemicals & Biorefinery Concept. Progress in Energy and Combustion Science, 38, 522-550.
  • Molnár, J., Gyemant, N., Mucsi, I., Molnár, A., Szabo, M., Körtvélyesi, T., Varga, A., Molnár, P. and Tóth, G., 2004. Modulation of Multidrug Resistance and Apoptosis of Cancer Cells by Selected Carotenoids. In vivo, 18, 237-244.
  • Molnar, J., Kars, M.K., Gündüz, U., Engi, H., Schumacher, U., Van damme, E.J., Peumans, W.J., Makovitzky, J., Gyémánt, N. and Molnar, P., 2009. Interaction of Tomato Lectin with ABC Transporter in Cancer Cells: Glycosylation Confers Functional Conformation of P-gp. Acta Histochemica, 111, 329-333.
  • Nie, X., Xiao, C., Zhang, L., Zhao, Y., Liu, X., Wang, J., Tang, Y., Liu, Y., Zhao, Z. and Pan, Y., 2016. Rapid Production of Natural Carotenoids from Rhodobacter sphaeroides. Advance Journal of Food Science and Technology, 11, 800-804.
  • O'driscoll, L. and Clynes, M., 2006. Molecular Markers of Multiple Drug Resistance in Breast Cancer. Chemotherapy, 52, 125-129.
  • Oelze, J. and Klein, G., 1996. Control of Nitrogen Fixation by Oxygen in Purple Nonsulfur Bacteria. Archives of Microbiology, 165, 219-225.
  • Saini, R.K. and Keum, Y.S., 2018. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chemistry, 240, 90-103.
  • Saklani, A. and Kutty, S.K., 2008. Plant-Derived Compounds in Clinical Trials. Drug Discovery Today, 13, 161-171.
  • Sasaki, K., Watanabe, M., Suda, Y., Ishizuka, A. and Noparatnaraporn, N., 2005. Applications of Photosynthetic Bacteria for Medical Fields. Journal of Bioscience and Bioengineering, 100, 481-488.
  • Shneour, E.A., 1962. Carotenoid Pigment Conversion in Rhodopseudomonas spheroids. Biochimica et Biophysica Acta, 62, 534-540.
  • Squina, F.M., Yamashita, F., Pereira, J.L. and Mercadante, A.Z., 2002. Production of Carotenoids by Rhodotorula rubra and R. glutinis in Culture Medium Supplemented with Sugar Cane Juice. Food Biotechnology, 16, 227-235.
  • Takayama, K., Qureshi, N., Beutler, B. and Kirkland, T.N., 1989. Diphosphoryl Lipid a from Rhodopseudomonas sphaeroides ATCC 17023 Blocks Induction of Cachectin in Macrophages by Lipopolysaccharide. Infection and Immunity, 57, 1336-1338.
  • Teng, Y.N., Sheu, M.J., Hsieh, Y.W., Wang, R.Y., Chiang, Y.C. and Hung, C.C., 2016. β-Carotene Reverses Multidrug Resistant Cancer Cells by Selectively Modulating Human P-Glycoprotein Function. Phytomedicine, 23, 316-323.
  • Ugocsai, K., Varga, A., Molnar, P., Antus, S. and Molnar, J., 2005. Effects of Selected Flovanoids and Carotenoids on Drug Accumulation and Apoptosis Induction in Multidrug-Resistant Colon Cancer Cells Expressing MDR1/LRP. In vivo, 19, 433-438.
  • Varmira, K., Habibi, A., Moradi, S. and Bahramian, E., 2018. Experimental Evaluation of Airlift Photobioreactor for Carotenoid Pigments Production by Rhodotorula rubra. Romanian Biotechnological Letters, 23, 13843-13852.
  • Wong, H.L., Wu, X.Y. and Bendayan, R., 2009. Multidrug Resistance in Solid Tumor and Its Reversal, in: Lu, Y., Mahato, R. (Eds), Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, pp.121-148.
  • Yeliseev, A.A., Eraso, J.M. and Kaplan, S., 1996. Differential Carotenoid Composition of the B875 and B800-850 Photosynthetic Antenna Complexes in Rhodobacter sphaeroides 2.4.1: Involvement of Spheroidene and Spheroidenone in Adaptation to Changes in Light Intensity and Oxygen Availability. Journal of Bacteriology, 178, 5877-5883.
  • Yeliseev, A.A. and Kaplan S., 1997. Anaerobic Carotenoid Biosynthesis in Rhodobacter sphaeroides 2.4.1: H2O is a Source of Oxygen for the 1-Methoxy Group of Spheroidene but not for the 2-Oxo Group of Spheroidenone. FEBS Letters, 403, 10-14.
  • Zhao, Y., Guo, L., Xia, Y., Zhuang, X. and Chu, W., 2019. Isolation, Identification of Carotenoid-Producing Rhodotorula sp. from Marine Environment and Optimization for Carotenoid Production. Marine Drugs, 17, 161.

Investigation of Antioxidant and Cytotoxic Effects of Biotechnologically Produced Carotenoids from Rhodobacter sphaeroides O.U. 001

Year 2020, , 559 - 568, 15.07.2020
https://doi.org/10.17714/gumusfenbil.597048

Abstract

Carotenoids take special attention due to their
strong antioxidant properties. In the present study, the antioxidant and
antiproliferative effects of carotenoids extracted from
Rhodobacter sphaeroides O.U. 001 were investigated. For this, R. sphaeroides O.U. 001 was first cultivated in a 5 L
bioreactor. After that, the carotenoids were extracted from
R. sphaeroides O.U. 001 using acetone as solvent. The
effects of carotenoid extract on proliferation of vincristine and paclitaxel
resistant cells (MCF-7/Vinc, MCF-7/Pac) were investigated by MTT cytotoxicity
assay. The checkerboard plate technique was performed to evaluate the
interactions between carotenoid extract and cancer drugs on the cells. The
antioxidant activity of the carotenoid extract was assessed by 2, 2 - diphenyl,
1- picryl hydrazyl (DPPH) radical scavenging assay. As a result of extraction,
considerable amount of carotenoid yield was obtained (80.69 mg carotenoid/g dry
cell weight). It was found that carotenoid extract had no inhibitory effects on
cell proliferation and interaction of carotenoids with anticancer drugs
exhibited antagonistic effects. In addition to these, the DPPH antioxidant
activity (IC50 value) of the carotenoid extract was calculated as 25
µg/mL. In conclusion, biotechnologically produced bacterial carotenoids were
shown to have considerable antioxidant activity without any cytotoxicity on
cancer cells.

Project Number

110T552

References

  • Aksu, Z. and Eren, A.T., 2005. Carotenoids Production by the Yeast Rhodotorula mucilaginosa: Use of Agricultural Wastes as a Carbon Source. Process Biochemistry, 40, 2985–2991.
  • Armstrong, A.G., 1994. Eubacteria Show Their True Colors: Genetics of Carotenoid Pigment Biosynthesis from Microbes to Plants. Journal of Bacteriology, 176, 4795-4802.
  • Carvalho, L.M.J., Gomes, P.B., Godoy, R.L.O., Pacheco, S., Monte, P.H.F., Carvalho, J.L.V., Nutti, M.R., Neves, A.C.L., Vieira, A.C.R.A. and Ramos, S.R.R., 2012. Total Carotenoid Content, α-Carotene and β-Carotene, of Landrace Pumpkins (Cucurbita moschata Duch): A Preliminary Study. Food Research International, 47, 337-340.
  • Diouf, P.N., Stevanovic, T. and Cloutier, A., 2009. Antioxidant Properties and Polyphenol Contents of Trembling Aspen Bark Extracts. Wood Science and Technology, 43, 457-470.
  • Fong, W.F., Wang, C., Zhu, G.Y., Leung, C.H., Yang, M.S. and Cheung, H.Y., 2007. Reversal of Multidrug Resistance in Cancer Cells by Rhizoma alismatis Extract. Phytomedicine, 14, 160-165.
  • Fraser, J.N., Hashimoto, H. and Cogdell, J.R., 2001. Carotenoids and Bacterial Photosynthesis: The Story So Far. Photosynthesis Research, 70, 249-256.
  • Gu, Z., Chen, D., Han, Y., Chen, Z. and Gu, F., 2008. Optimization of Carotenoids Extraction from Rhodobacter sphaeroides. LWT-Food Science and Technology, 41, 1082-1088.
  • Jambun, D.D., Ong, K.S., Lim, Y.Y., Tan, J.B.L., Lee, W.L., Muhamad, A., Yap, S.W. and Lee, S.M., 2018. Antioxidant Properties of Etlingera pubescens, an Edible Ginger Plant Endemic to Borneo. Food Bioscience, 25, 44-51.
  • Joshi, H.M. and Tabita, F.R., 1996. A Global Two Component Signal Transduction System That Integrates the Control of Photosynthesis, Carbon Dioxide Assimilation, and Nitrogen Fixation. Proceedings of the National Academy of Sciences, 93, 14515-14520.
  • Kars, G. and Alparslan, Ü., 2013. Valorization of Sugar Beet Molasses for the Production of Biohydrogen and 5-Aminolevulinic Acid by Rhodobacter sphaeroides O.U. 001 in a Biorefinery Concept. International Journal of Hydrogen Energy, 38, 14488-14494.
  • Kars, G. and Gündüz, U., 2010. Towards a Super H2 Producer: Improvements in Photofermentative Biohydrogen Production by Genetic Manipulations. International Journal of Hydrogen Energy, 35, 6646-6656.
  • Kars, G., Gündüz, U., Yücel, M., Rakhely, G., Kovacs, K.L. and Eroğlu, İ., 2009. Evaluation of Hydrogen Production by Rhodobacter sphaeroides O.U. 001 and Its hupSL Deficient Mutant Using Acetate and Malate as Carbon Sources. International Journal of Hydrogen Energy, 34, 2184-2190.
  • Kars, M.D., İşeri, O.D., Gündüz, U. and Molnár, J., 2008. Reversal of MDR by Synthetic and Natural Compounds in Drug Resistant MCF-7 Cell Lines. Chemotherapy, 54, 194-200.
  • Kwon, S.Y., Jiang, S.N., Zheng, J.H., Choy, H.E. and Min, J.J., 2014. Rhodobacter sphaeroides, a Novel Tumor-Targeting Bacteria That Emits Natural Near-Infrared Fluorescence. Microbiology and Immunology, 58, 172-179.
  • Lang, H.P., Cogdell, R.J., Takaichi, S. and Hunter, C.N., 1995. Complete DNA Sequence, Specific Tn5 Insertion Map, and Gene Assignment of the Carotenoid Biosynthesis Pathway of Rhodobacter sphaeroides. Journal of Bacteriology, 177, 2064-2073.
  • Li, C., Swofford, C.A. and Sinskey, A.J., 2020. Modular Engineering for Microbial Production of Carotenoids. Metabolic Engineering Communications, 10, e00118.
  • Macias-Sanchez, M.D., Mantell, C., Rodriguez, M., Martinez de la Ossa, E., Lubián, L.M. and Montero, O., 2005. Supercritical Fluid Extraction of Carotenoids and Chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66, 245-251.
  • Menon, V. and Rao, M., 2012. Trends in Bioconversion of Lignocellulose: Biofuels, Platform Chemicals & Biorefinery Concept. Progress in Energy and Combustion Science, 38, 522-550.
  • Molnár, J., Gyemant, N., Mucsi, I., Molnár, A., Szabo, M., Körtvélyesi, T., Varga, A., Molnár, P. and Tóth, G., 2004. Modulation of Multidrug Resistance and Apoptosis of Cancer Cells by Selected Carotenoids. In vivo, 18, 237-244.
  • Molnar, J., Kars, M.K., Gündüz, U., Engi, H., Schumacher, U., Van damme, E.J., Peumans, W.J., Makovitzky, J., Gyémánt, N. and Molnar, P., 2009. Interaction of Tomato Lectin with ABC Transporter in Cancer Cells: Glycosylation Confers Functional Conformation of P-gp. Acta Histochemica, 111, 329-333.
  • Nie, X., Xiao, C., Zhang, L., Zhao, Y., Liu, X., Wang, J., Tang, Y., Liu, Y., Zhao, Z. and Pan, Y., 2016. Rapid Production of Natural Carotenoids from Rhodobacter sphaeroides. Advance Journal of Food Science and Technology, 11, 800-804.
  • O'driscoll, L. and Clynes, M., 2006. Molecular Markers of Multiple Drug Resistance in Breast Cancer. Chemotherapy, 52, 125-129.
  • Oelze, J. and Klein, G., 1996. Control of Nitrogen Fixation by Oxygen in Purple Nonsulfur Bacteria. Archives of Microbiology, 165, 219-225.
  • Saini, R.K. and Keum, Y.S., 2018. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chemistry, 240, 90-103.
  • Saklani, A. and Kutty, S.K., 2008. Plant-Derived Compounds in Clinical Trials. Drug Discovery Today, 13, 161-171.
  • Sasaki, K., Watanabe, M., Suda, Y., Ishizuka, A. and Noparatnaraporn, N., 2005. Applications of Photosynthetic Bacteria for Medical Fields. Journal of Bioscience and Bioengineering, 100, 481-488.
  • Shneour, E.A., 1962. Carotenoid Pigment Conversion in Rhodopseudomonas spheroids. Biochimica et Biophysica Acta, 62, 534-540.
  • Squina, F.M., Yamashita, F., Pereira, J.L. and Mercadante, A.Z., 2002. Production of Carotenoids by Rhodotorula rubra and R. glutinis in Culture Medium Supplemented with Sugar Cane Juice. Food Biotechnology, 16, 227-235.
  • Takayama, K., Qureshi, N., Beutler, B. and Kirkland, T.N., 1989. Diphosphoryl Lipid a from Rhodopseudomonas sphaeroides ATCC 17023 Blocks Induction of Cachectin in Macrophages by Lipopolysaccharide. Infection and Immunity, 57, 1336-1338.
  • Teng, Y.N., Sheu, M.J., Hsieh, Y.W., Wang, R.Y., Chiang, Y.C. and Hung, C.C., 2016. β-Carotene Reverses Multidrug Resistant Cancer Cells by Selectively Modulating Human P-Glycoprotein Function. Phytomedicine, 23, 316-323.
  • Ugocsai, K., Varga, A., Molnar, P., Antus, S. and Molnar, J., 2005. Effects of Selected Flovanoids and Carotenoids on Drug Accumulation and Apoptosis Induction in Multidrug-Resistant Colon Cancer Cells Expressing MDR1/LRP. In vivo, 19, 433-438.
  • Varmira, K., Habibi, A., Moradi, S. and Bahramian, E., 2018. Experimental Evaluation of Airlift Photobioreactor for Carotenoid Pigments Production by Rhodotorula rubra. Romanian Biotechnological Letters, 23, 13843-13852.
  • Wong, H.L., Wu, X.Y. and Bendayan, R., 2009. Multidrug Resistance in Solid Tumor and Its Reversal, in: Lu, Y., Mahato, R. (Eds), Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, pp.121-148.
  • Yeliseev, A.A., Eraso, J.M. and Kaplan, S., 1996. Differential Carotenoid Composition of the B875 and B800-850 Photosynthetic Antenna Complexes in Rhodobacter sphaeroides 2.4.1: Involvement of Spheroidene and Spheroidenone in Adaptation to Changes in Light Intensity and Oxygen Availability. Journal of Bacteriology, 178, 5877-5883.
  • Yeliseev, A.A. and Kaplan S., 1997. Anaerobic Carotenoid Biosynthesis in Rhodobacter sphaeroides 2.4.1: H2O is a Source of Oxygen for the 1-Methoxy Group of Spheroidene but not for the 2-Oxo Group of Spheroidenone. FEBS Letters, 403, 10-14.
  • Zhao, Y., Guo, L., Xia, Y., Zhuang, X. and Chu, W., 2019. Isolation, Identification of Carotenoid-Producing Rhodotorula sp. from Marine Environment and Optimization for Carotenoid Production. Marine Drugs, 17, 161.
There are 36 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Gökhan Kars 0000-0002-2507-2305

Meltem Demirel Kars 0000-0002-7300-4075

İhsan Obalı 0000-0002-6090-1981

Ayça Emsen This is me 0000-0003-3028-3112

Ufuk Gündüz This is me 0000-0002-5158-7652

Project Number 110T552
Publication Date July 15, 2020
Submission Date July 26, 2019
Acceptance Date April 20, 2020
Published in Issue Year 2020

Cite

APA Kars, G., Demirel Kars, M., Obalı, İ., Emsen, A., et al. (2020). Rhodobacter sphaeroides O.U.001’den Biyoteknolojik Olarak Üretilen Karotenoidlerin Antioksidan ve Sitotoksik Etkilerinin Araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(3), 559-568. https://doi.org/10.17714/gumusfenbil.597048