Research Article
BibTex RIS Cite

Farklı Elyaf Takviyeleri ile İçi Oyuk Şekiller Üretmek İçin Elyaf Sarma Makinesi Geliştirmesi

Year 2020, , 552 - 558, 15.07.2020
https://doi.org/10.17714/gumusfenbil.687600

Abstract

Son yıllarda,
elyaf takviyeli oyuk kompozit yapılar, havacılık, inşaat, savunma, uzay,
otomotiv ve enerji gibi birçok endüstriyel alanda sağladıkları yüksek
dayanım/ağırlık ve direngenlik/ağırlık oranlarından dolayı tercih edilmeleri
nedeniyle önemli bir mühendislik konusu haline geldi. Bu malzemelerin üretilmesinde
farklı yöntemler mevcut olmasına rağmen, en güvenilir yöntem filament sarım
tekniğidir. Filament sarım tekniğinin temel prensibi, reçine ile emprenye
edilen elyaf takviyesinin, taşıyıcı çeviri ve mandrel dönüş hareketleri
kullanılarak döner bir mandrel üzerine sarılmasıdır. Bu çalışmada, farklı
tiplerde fiber takviyeli kompozit boruların üretimi için 2 eksenli harekete
sahip bir filaman sarma makinesi tasarlandı ve üretildi. Makine, numunelerin
750 mm uzunluğa ve 250 mm çapa kadar boyutlar, sarmal, kasnak ve kutup sargı
tipleri için farklı sarım açıları gibi farklı tasarım parametrelerinde üretme
kabiliyetine sahiptir. Elyaf takviyeli örnekler, farklı sarım açıları, elyaf
takviyeleri ve enine kesitlere göre üretildi.

References

  • Abdalla, F.H., Mutasher, S.A., Khalid, Y.A., Sapuan, S.M., Hamouda, A.M.S., Sahari, B.B., Hamdan, M.M., 2007. Design and Fabrication of Low Cost Filament Winding Machine. Materials & Design, 28(1), 234-239.
  • Bulut, M., 2020. Low-Velocity Impact Tests on Basalt Fiber/Polypropylene Core Honeycomb Sandwich Composites. Mechanics of Composite Materials, 1-10.
  • Gay, D., 2014. Composite Materials: Design and Applications: CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, USA.
  • Gemi, L., Morkavuk, S., Köklü, U., & Gemi, D.S., 2019. An Experimental Study on the Effects of Various Drill Types on Drilling Performance of GFRP Composite Pipes and Damage Formation. Composites Part B: Engineering, 172, 186-194.
  • Gemi, L., Köklü, U., Yazman, Ş., Morkavuk, S., 2020. The Effects of Stacking Sequence on Drilling Machinability of Filament Wound Hybrid Composite Pipes: Part-1 Mechanical Characterization and Drilling Tests. Composites Part B: Engineering, 107787.
  • Imamura, T., Kuroiwa, T., Terashima, K., Takemoto, H., 1999. Proc. In Systems, Man and Cybernetics, IEEE SMC'99 Conference (IEEE 1999), 12-15 October, 1999. Antalya-Turkey.
  • Kim, Y.K., Chalivendra, V., 2020. Natural Fibre Composites (NFCs) for Construction and Automotive Industries. In Handbook of Natural Fibres (pp. 469-498). Woodhead Publishing.
  • Krishnamurthy, T.N., Idkan, M., 2014. Fabrication of Low Cost Filament Winding Machine. Journal of Recent Trends in Electrical & Electronics Engg., 4(1), 30-39.
  • Mateen, M.A., Shankar, D.R., Hussain, M.M., 2018. Design and Development of Low Cost Two Axis Filament Winding Machine. Journal of Advanced Manufacturing Technology (JAMT), 12(1), 117-126.
  • Mutasher, S., Mir-Nasiri, N., Chai Lin, L., 2012. Small-Scale Filament Winding Machine for Producing Fiber Composite Products. Journal of Engineering Science and Technology, 7.2, 156-168.
  • Özbek, Ö., Bozkurt, Ö.Y., 2019. Hoop Tensile and Compression Behavior of Glass-Carbon Intraply Hybrid Fiber Reinforced Filament Wound Composite Pipes. Materials Testing, 61(8), 763-769.
  • Peters, S.T., 2011. Composite Filament Winding: ASM International, Materials Park, Ohio, USA.
  • Quanjin, M., Rejab, M.R.M., Kumar, N.M., Idris, M.S., 2019. Experimental Assessment of the 3-Axis Filament Winding Machine Performance. Results in Engineering, 2, 100017.
  • Saad, M.A., 1997. Design and Fabricate Filament Winding Machine and Analysis of Cotton/Epoxy and Pandanus/Epoxy: Master Thesis, Universiti Putra Malaysia.

Development of Filament Winding Machine for Producing Round Shapes with Different Fiber Reinforcements

Year 2020, , 552 - 558, 15.07.2020
https://doi.org/10.17714/gumusfenbil.687600

Abstract

In recent years, fiber
reinforced composite structures have become an important engineering subject
because they are preferred due to their high strength / weight and stiffness /
weight ratios in many industrial fields such as aerospace, construction,
defense, aviation, automotive and energy. Although different methods are
present to produce of these materials, the most reliable way is the filament
winding technique. The basic principle of the filament winding technique is
based on that the fiber reinforcement impregnated by resin is wrapped on a
rotary mandrel using carriage translation and mandrel rotation motions. In this
study, a filament winding machine having 2-axis motion was designed and
constructed for the fabrication of different types of fiber reinforced composite
pipes. The machine is capable of producing specimens in different design
parameters such as dimensions up to 750 mm length and 250 mm diameter,
different winding angles for hoop, helical and polar winding types. The fiber
reinforced specimens were manufactured according to different winding angles,
fiber reinforcements and cross sections.

References

  • Abdalla, F.H., Mutasher, S.A., Khalid, Y.A., Sapuan, S.M., Hamouda, A.M.S., Sahari, B.B., Hamdan, M.M., 2007. Design and Fabrication of Low Cost Filament Winding Machine. Materials & Design, 28(1), 234-239.
  • Bulut, M., 2020. Low-Velocity Impact Tests on Basalt Fiber/Polypropylene Core Honeycomb Sandwich Composites. Mechanics of Composite Materials, 1-10.
  • Gay, D., 2014. Composite Materials: Design and Applications: CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, USA.
  • Gemi, L., Morkavuk, S., Köklü, U., & Gemi, D.S., 2019. An Experimental Study on the Effects of Various Drill Types on Drilling Performance of GFRP Composite Pipes and Damage Formation. Composites Part B: Engineering, 172, 186-194.
  • Gemi, L., Köklü, U., Yazman, Ş., Morkavuk, S., 2020. The Effects of Stacking Sequence on Drilling Machinability of Filament Wound Hybrid Composite Pipes: Part-1 Mechanical Characterization and Drilling Tests. Composites Part B: Engineering, 107787.
  • Imamura, T., Kuroiwa, T., Terashima, K., Takemoto, H., 1999. Proc. In Systems, Man and Cybernetics, IEEE SMC'99 Conference (IEEE 1999), 12-15 October, 1999. Antalya-Turkey.
  • Kim, Y.K., Chalivendra, V., 2020. Natural Fibre Composites (NFCs) for Construction and Automotive Industries. In Handbook of Natural Fibres (pp. 469-498). Woodhead Publishing.
  • Krishnamurthy, T.N., Idkan, M., 2014. Fabrication of Low Cost Filament Winding Machine. Journal of Recent Trends in Electrical & Electronics Engg., 4(1), 30-39.
  • Mateen, M.A., Shankar, D.R., Hussain, M.M., 2018. Design and Development of Low Cost Two Axis Filament Winding Machine. Journal of Advanced Manufacturing Technology (JAMT), 12(1), 117-126.
  • Mutasher, S., Mir-Nasiri, N., Chai Lin, L., 2012. Small-Scale Filament Winding Machine for Producing Fiber Composite Products. Journal of Engineering Science and Technology, 7.2, 156-168.
  • Özbek, Ö., Bozkurt, Ö.Y., 2019. Hoop Tensile and Compression Behavior of Glass-Carbon Intraply Hybrid Fiber Reinforced Filament Wound Composite Pipes. Materials Testing, 61(8), 763-769.
  • Peters, S.T., 2011. Composite Filament Winding: ASM International, Materials Park, Ohio, USA.
  • Quanjin, M., Rejab, M.R.M., Kumar, N.M., Idris, M.S., 2019. Experimental Assessment of the 3-Axis Filament Winding Machine Performance. Results in Engineering, 2, 100017.
  • Saad, M.A., 1997. Design and Fabricate Filament Winding Machine and Analysis of Cotton/Epoxy and Pandanus/Epoxy: Master Thesis, Universiti Putra Malaysia.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Özkan Özbek 0000-0003-1532-4262

Ali Kılıç 0000-0002-3241-9944

Ömer Yavuz Bozkurt 0000-0003-0685-8748

Publication Date July 15, 2020
Submission Date February 18, 2020
Acceptance Date April 20, 2020
Published in Issue Year 2020

Cite

APA Özbek, Ö., Kılıç, A., & Bozkurt, Ö. Y. (2020). Farklı Elyaf Takviyeleri ile İçi Oyuk Şekiller Üretmek İçin Elyaf Sarma Makinesi Geliştirmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(3), 552-558. https://doi.org/10.17714/gumusfenbil.687600