Research Article
BibTex RIS Cite

Taşıt Titreşimlerinin Sürücü Konforuna Etkisi: Yarım Araba ve Sürücü Modeli

Year 2020, , 796 - 803, 15.07.2020
https://doi.org/10.17714/gumusfenbil.727889

Abstract

Bu
çalışmada taşıt titreşimlerinin sürücü konforuna etkisi, iç organlara iletilen
titreşimin büyüklükleri cinsinden incelenmiştir. Bu maksatla bir yarım araba
modeli, araç koltuğu ile sürücünün iç organlarıyla birlikte oluşturulmuştur.
Araç ve koltuğu 5 serbestlik derecesine sahipken sürücü 4 serbestlik derecesine
sahip tasarlanmış, sonuçta toplam 9 serbestlik dereceli bir sistem
kurgulanmıştır. Hareket denklemleri yazılarak yollarda hız engelleyici olarak
kullanılan kasisler titreşim girdisi olarak kabul edilmiştir. Farklı taşıt
hızları ve farklı kasis boyutları
için benzetimler yapılmış ve sürücünün başına, iç organlarına ve sürücü
koltuğuna iletilen titreşimler incelenmiştir. İç organlara iletilen
titreşimlerin büyüklükleri değerlendirilirken kök ortalama kare (RMS) değerleri kullanılmış ve sonuçlar grafikler
vasıtasıyla yorumlanmıştır. Literatürde süspansiyon ve sürücü koltuk
tasarımları daha çok sürücü koltuğuna iletilen titreşimin azaltılmasını kıstas
alırken çok azı ise sürücü kafasına iletilen titreşimin ivmesi esas almaktadır.
Bu çalışmada ise süspansiyon, koltuk ve kasis tasarımlarında sürücünün hem başı
hem de iç organlarına iletilen titreşimin kök ortalama kare değerinin de hesaba
katılması önerilmiştir.

References

  • Abbas, W., Emam, A., Badran, S., Shebl, M., Abouelatta, O., 2013. Optimal Seat and Suspension Design for a Half-Car with Driver Model Using Genetic Algorithm. Intelligent Control and Automation. 04, 199–205.
  • Anandan, A. ve Kandavel, A., 2020. Investigation and Performance Comparison of Ride Comfort on The Created Human Vehicle Road İntegrated Model Adopting Genetic Algorithm Optimized Proportional İntegral Derivative Control Technique. Proceedings of the Institution of Mechanical Engineers. Part K J. Multi-Body Dyn. 146441932090668.
  • Gadhvi, B., Savsani, V. ve Patel, V., 2016. Multi-Objective Optimization of Vehicle Passive Suspension System Using NSGA-II, SPEA2 and PESA-II. Procedia Technology. 23, 361–368. https://doi.org/10.1016/j.protcy.2016.03.038
  • Gündoğdu, Ö., 2007. Optimal Seat and Suspension Design for a Quarter Car with Driver Model Using Genetic Algorithms. Int. J. Ind. Ergon. 37, 327–332.
  • Liang, C.-C., Chiang, C.-F. ve Nguyen, T.-G., 2007. Biodynamic responses of seated pregnant subjects exposed to Vertical Vibrations in Driving Conditions. Vehicle System Dynamics. 45, 1017–1049.
  • Maioh, B.G., Noise and Vibration, Principles of Occupational Health & Hygiene: An Introduction, 6.Ed. Tillman, C., Allen & Unwin, 2007, Sidney, Australia.
  • Mansfield, N. J, 2004.Human Response to Vibration. CRC Press., Boca Raton London New York Washington, D.C. ISBN 0-415-28239-X ,14p.
  • Mitra, A.C., Desai, G.J., Patwardhan, S.R., Shirke, P.H., Kurne, W.M.H. ve Banerjee, N., 2016. Optimization of Passive Vehicle Suspension System by Genetic Algorithm. Procedia Engineering., International Conference on Vibration Problems 2015 144, 1158–1166
  • Nagarkar, M.P., Patil, G.J., Zaware, R.N., 2016. Optimization of nonlinear quarter car suspension–seat–driver model. Journal of Advanced Research. 7, 991–1007.
  • TS ISO 2631-1, 2013; Mekanik Titreşim ve Şok – Tüm Vücut Titreşime Maruz Kalma Değerlendirilmesi Bölüm 1: Genel Kurallar, Türk Standartları Enstitüsü, Ankara.
  • Wan Y ve Schimmels JM, 1995, A Simple Model that Captures the Essential Dynamics of a Seated Human Exposed to Whole Body Vibration, Advances in Bioengineering, ASME, BED 31, 333-334.

Effect of Vehicle Vibrations on the Driver Confort: Half Car and Driver Model

Year 2020, , 796 - 803, 15.07.2020
https://doi.org/10.17714/gumusfenbil.727889

Abstract

In this study, the effects of vehicle vibrations on
driver comfort are examined in terms of the magnitude of the vibration
transmitted to the internal organs. For this purpose, a half car model was
created with the vehicle seat and the driver with the internal organs. While
the vehicle and its seat have 5 degrees of freedom, the driver is modeled as 4
degrees of freedom, and as a result, a system with a total of 9 degrees of
freedom has been modeled. The bumps used as speed regulators on the roads are
accepted as vibration input to the system while writing the equations of
motion. Simulations were performed for different vehicle speeds and different
bumper dimensions to evaluate the vibrations
transmitted to the driver's head, internal organs and the driver's seat. When
assessing the magnitudes of the vibrations transmitted to the internal organs,
the root mean square is used. In the literature, suspension and driver seat
designs take the criterion of reducing the vibration transmitted to the
driver's seat, while few are based on the acceleration of the vibration
transmitted to the driver's head. In this study, it is proposed to take into
account the root mean square value of the vibration transmitted to both the
head and internal organs of the driver in suspension, seat and bump designs.

References

  • Abbas, W., Emam, A., Badran, S., Shebl, M., Abouelatta, O., 2013. Optimal Seat and Suspension Design for a Half-Car with Driver Model Using Genetic Algorithm. Intelligent Control and Automation. 04, 199–205.
  • Anandan, A. ve Kandavel, A., 2020. Investigation and Performance Comparison of Ride Comfort on The Created Human Vehicle Road İntegrated Model Adopting Genetic Algorithm Optimized Proportional İntegral Derivative Control Technique. Proceedings of the Institution of Mechanical Engineers. Part K J. Multi-Body Dyn. 146441932090668.
  • Gadhvi, B., Savsani, V. ve Patel, V., 2016. Multi-Objective Optimization of Vehicle Passive Suspension System Using NSGA-II, SPEA2 and PESA-II. Procedia Technology. 23, 361–368. https://doi.org/10.1016/j.protcy.2016.03.038
  • Gündoğdu, Ö., 2007. Optimal Seat and Suspension Design for a Quarter Car with Driver Model Using Genetic Algorithms. Int. J. Ind. Ergon. 37, 327–332.
  • Liang, C.-C., Chiang, C.-F. ve Nguyen, T.-G., 2007. Biodynamic responses of seated pregnant subjects exposed to Vertical Vibrations in Driving Conditions. Vehicle System Dynamics. 45, 1017–1049.
  • Maioh, B.G., Noise and Vibration, Principles of Occupational Health & Hygiene: An Introduction, 6.Ed. Tillman, C., Allen & Unwin, 2007, Sidney, Australia.
  • Mansfield, N. J, 2004.Human Response to Vibration. CRC Press., Boca Raton London New York Washington, D.C. ISBN 0-415-28239-X ,14p.
  • Mitra, A.C., Desai, G.J., Patwardhan, S.R., Shirke, P.H., Kurne, W.M.H. ve Banerjee, N., 2016. Optimization of Passive Vehicle Suspension System by Genetic Algorithm. Procedia Engineering., International Conference on Vibration Problems 2015 144, 1158–1166
  • Nagarkar, M.P., Patil, G.J., Zaware, R.N., 2016. Optimization of nonlinear quarter car suspension–seat–driver model. Journal of Advanced Research. 7, 991–1007.
  • TS ISO 2631-1, 2013; Mekanik Titreşim ve Şok – Tüm Vücut Titreşime Maruz Kalma Değerlendirilmesi Bölüm 1: Genel Kurallar, Türk Standartları Enstitüsü, Ankara.
  • Wan Y ve Schimmels JM, 1995, A Simple Model that Captures the Essential Dynamics of a Seated Human Exposed to Whole Body Vibration, Advances in Bioengineering, ASME, BED 31, 333-334.
There are 11 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mıthat Yanıkoren 0000-0003-1075-313X

Selim Tezgel This is me 0000-0003-2153-4071

Bilal Usanmaz 0000-0003-0531-4618

Ömer Gündoğdu 0000-0003-2656-4181

Publication Date July 15, 2020
Submission Date April 27, 2020
Acceptance Date June 20, 2020
Published in Issue Year 2020

Cite

APA Yanıkoren, M., Tezgel, S., Usanmaz, B., Gündoğdu, Ö. (2020). Taşıt Titreşimlerinin Sürücü Konforuna Etkisi: Yarım Araba ve Sürücü Modeli. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(3), 796-803. https://doi.org/10.17714/gumusfenbil.727889