Research Article
BibTex RIS Cite

Some Topologıcal Properties of Generalized Grand Lebesgue Sequence Spaces Defined by Modulus Function

Year 2020, , 1144 - 1149, 15.10.2020
https://doi.org/10.17714/gumusfenbil.732116

Abstract

References

  • Iwaniec, T. ve Sbordone, C., 1992. On the Integrability of the Jacobian Under Minimal Hypotheses. Archive for Rational Mechanics and analysis. 119(2), 129-143.
  • Jain, P. ve Kumari, S., 2012. On Grand Lorentz Spaces and the Maximal Operator. Georgian Mathematical Journal. 19, 235-246.
  • Maddox, I. J., 1986. Sequence Spaces Defined by a Modulus. Mathematical Proceeding of the Cambridge Philosophical Society. 100, 161-166.
  • Malkowsky, E. ve Savaş, E., 2000. Some λ-Sequence Spaces Defined by a Modulus. Archiv der Mathematik. 36(3), 219-228.
  • Nakano, H., 1953. Concave Modular. Journal of the Mathematical Society of Japan. 5, 29-49.
  • Oğur, O., 2015. A New Double Cesaro Sequence Space Defined by Modulus Functions. Journal of Applied Functional Analysis. 10(1), 109-116.
  • Oğur, O. ve Duyar, C., 2016. On Generalized Lorentz Sequence Space Defined by Modulus Functions. Filomat. 30(2), 497-504.
  • Rafeiro, H., Samko, S., Umarkhadzhiev S., 2018. Grand Lebesgue Sequence Spaces. Georgian Mathematical Journal. 19(2), 235-246.
  • Ruckle, W. H.,1973. FK-Spaces in which the Sequence of Coordinate Vectors is Bounded. Canadian Journal of Mathematics. 25, 973-978.
  • Samko, S. ve Umarkhadzhiev S., 2017. On Grand Lebesgue Spaces on Sets of Infinite Measure. Mathematische Nachrichten. 290, 913-919.
  • Savaş, E., 1999. On Some Generalized Sequence Spaces Defined by a Modulus. Indian Journal of Pure and Applied Mathematics. 30(5), 459-464.
  • Wilansky, A., 1964. Functıonal Analysis: New York, Blaisdell.

Modülüs Fonksiyonu ile Tanımlanmış Genelleştirilmiş Büyük Lebesgue Dizi Uzaylarının Topolojik Bazı Özellikleri

Year 2020, , 1144 - 1149, 15.10.2020
https://doi.org/10.17714/gumusfenbil.732116

Abstract

Bu çalışmada, Rafeiro vd. (2018) tarafından tanımlanan büyük Lebesgue dizi uzaylarını modülüs fonksiyonu yardımıyla genelleştirdik. Ayrıca, bu uzayların bazı topolojik ve kapsama özelliklerini inceledik.

References

  • Iwaniec, T. ve Sbordone, C., 1992. On the Integrability of the Jacobian Under Minimal Hypotheses. Archive for Rational Mechanics and analysis. 119(2), 129-143.
  • Jain, P. ve Kumari, S., 2012. On Grand Lorentz Spaces and the Maximal Operator. Georgian Mathematical Journal. 19, 235-246.
  • Maddox, I. J., 1986. Sequence Spaces Defined by a Modulus. Mathematical Proceeding of the Cambridge Philosophical Society. 100, 161-166.
  • Malkowsky, E. ve Savaş, E., 2000. Some λ-Sequence Spaces Defined by a Modulus. Archiv der Mathematik. 36(3), 219-228.
  • Nakano, H., 1953. Concave Modular. Journal of the Mathematical Society of Japan. 5, 29-49.
  • Oğur, O., 2015. A New Double Cesaro Sequence Space Defined by Modulus Functions. Journal of Applied Functional Analysis. 10(1), 109-116.
  • Oğur, O. ve Duyar, C., 2016. On Generalized Lorentz Sequence Space Defined by Modulus Functions. Filomat. 30(2), 497-504.
  • Rafeiro, H., Samko, S., Umarkhadzhiev S., 2018. Grand Lebesgue Sequence Spaces. Georgian Mathematical Journal. 19(2), 235-246.
  • Ruckle, W. H.,1973. FK-Spaces in which the Sequence of Coordinate Vectors is Bounded. Canadian Journal of Mathematics. 25, 973-978.
  • Samko, S. ve Umarkhadzhiev S., 2017. On Grand Lebesgue Spaces on Sets of Infinite Measure. Mathematische Nachrichten. 290, 913-919.
  • Savaş, E., 1999. On Some Generalized Sequence Spaces Defined by a Modulus. Indian Journal of Pure and Applied Mathematics. 30(5), 459-464.
  • Wilansky, A., 1964. Functıonal Analysis: New York, Blaisdell.
There are 12 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Oğuz Oğur 0000-0002-3206-5330

Publication Date October 15, 2020
Submission Date May 4, 2020
Acceptance Date September 25, 2020
Published in Issue Year 2020

Cite

APA Oğur, O. (2020). Modülüs Fonksiyonu ile Tanımlanmış Genelleştirilmiş Büyük Lebesgue Dizi Uzaylarının Topolojik Bazı Özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(4), 1144-1149. https://doi.org/10.17714/gumusfenbil.732116