Research Article
BibTex RIS Cite

Niyobyum İlavesinin (Bi, Pb)-2223 Bulk Süperiletken Sistemine Etkisi Üzerine Bir Araştırma

Year 2020, , 1188 - 1194, 15.10.2020
https://doi.org/10.17714/gumusfenbil.749048

Abstract

Niyobyum (Nb) ilaveli Bi1.85Pb0.35Sr1.9Ca2.1Cu3.1Oδ içeren bir dizi bizmut-tabanlı bulk süperiletken malzemeler, geleneksel katı hal reaksiyon yöntemi ile sentezlendi. Malzemelerin fazları ve mikro-yapısal analizi, X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) ile gerçekleştirildi. Niyobyum ilavesinin elektriksel ve manyetik özellikler üzerindeki etkisi, sırasıyla özdirenç ve mıknatıslanma ölçümleri ile belirlendi. Niyobyum ilavesiyle kritik sıcaklıkta önemli bir azalma olmadı. Ayrıca niyobyum ilave edilmiş malzemelerin oda sıcaklığı özdirenci, saf malzemeye kıyasla azaldı. Nb katkılı numunelerin kritik akım yoğunluk değerleri saf numuneninkinden daha düşüktür.

Supporting Institution

Hakkari Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FM19AYP1

Thanks

Bu çalışma Hakkari Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından FM19AYP1 nolu proje kapsamında desteklenmiştir.

References

  • Albiss, B.A., Obaidat, I.M., Gharaibehb, M., Ghamlouche, H., Obeidat, S.M., 2010. Impact of Addition of Magnetic Nanoparticles on Vortex Pinning and Microstructure Properties of Bi–Sr–Ca–Cu–O Superconductor. Solid State Communications, 150, 1542-1547.
  • Asghari, R., Arslan, L.C., Sedghi, H., Naghshara, H., 2017. Synthesis and Characterization of Nb Substitution on (Bi-Pb)-2223 Superconductors. Journal of Low Temperature Physics, 189, 15–26.
  • Bean, C.P., 1962. Magnetization of Hard Superconductors. Physical Review Letters, 8, 250.
  • Bilgili, O., Kocabaş, K., 2014. Effect of Nb Addition on Magnetic, Structural and Superconducting Properties of (Bi, Pb)-2223 Superconductors. Journal of Materials Science: Materials in Electronics, 25, 2889–2897.
  • Cagliero, S., Agostino, A., Bonometti, E., Truccato, M., 2007. Electrical Transport Effects due to Oxygen Content Modifications in a Bi2Sr2CaCu2O8+δ Superconducting Whisker. Superconductor Science and Technology, 20, 667.
  • Cursino, E., Schmool, D.S., Garitaonandia, J.S. ve Rodrigues, D., 2009. Artificial Pinning Center Studies in Bi2212 Tapes and Bulks With Zirconium Oxide Inclusion. IEEE Transactions on Applied Superconductivity, 19, 3, 3516-3519.
  • de Vera, F.I., Bardolaza, H., Arcilla, C., Sarmago, R., 2019. Effect of In2O3 on the Grain Connectivity and Superconducting Behavior of Bi2Sr2−xInxCaCu2O8+d. SN Applied Sciences, 1, 96.
  • Ghazanfari, N., Kılıç, A., Gencer, A., Özkan, H., 2007. Effects of Nb2O5 Addition on Superconducting Properties of BSCCO. Solid State Communications, 144, 210-214.
  • Grivel, J.C. ve Flukiger, R., 1996. Factors Influencing the Apparent Activation Energy for the Formation of the (Bi,Pb)2Sr2Ca2Cu3O10+δ Compound. Journal of Alloys and Compounds, 241, 127-133.
  • Gul, I.H., Rehman, M.A., Ali, M., Maqsood, A., 2005. Effect of Vanadium and Barium on the Bi-based (2223) Superconductors. Physica C: Superconductivity and its Applications, 432, 71-80.
  • Guner, S.B., Zalaoglu, Y., Turgay, T., Ozyurt, O., Ulgen, A.T., Dogruer, M., Yildirim, G., 2019. A Detailed Research for Determination of Bi/Ga Partial Substitution Effect in Bi-2212 Superconducting Matrix on Crucial Characteristic Features. Journal of Alloys and Compounds, 772, 388-398.
  • Harabor, A., Rotaru, P., Harabor, N.A., 2019. Effect of Ni Substitute in Off-Stoichiometric Bi(Pb)-Sr-Ca-Cu(Ni)-O Superconductor. Excess Conductivity, XRD Analysis and Thermal Behaviour. Ceramics International, 45, 2742-2750.
  • Ishii, A. ve Hatano, T., 2000. Preparation of High Quality Bi2Sr2CaCu2O8+δ Thin Films on a MgO Substrate by Pulsed Laser Ablation and Post-Annealing – Recrystallization of Films Accompanying In-Plane Rotation of a and b Axes. Physica C, 340, 173-177.
  • Kishio, K., Komiya, S., Motohira, N., Kitazawa, K. ve Yamafuji, K., 1991. A Novel Method to Avoid Demagnetization Effect in Magnetization Studies of Bi2Sr2CaCu2O8 Single Crystals with the Field Perpendicular to the CuO2 Plane. Physica C, 185, 2377-2378.
  • Maeda, H., Tanaka, Y., Fukutomi, M. ve Asano, T., 1988. A New High-Tc Oxide Superconductor without a Rare Earth Element. Japanese Journal of Applied Physics, 27, 2, L209-L210.
  • Mohd Suib, N.R., Abu Bakar, I.P., Ibrahim, N.B., Abd-Shukor, R., 2019. Critical Current Density and AC Susceptibility of Bi1.6Pb0.4Sr2Ca2Cu3O10 Superconductor with Ni0.5Zn0.5Fe2O4 Nanomaterial. Journal of Superconductivity and Novel Magnetism, 32, 145-150.
  • Padam, G.K., Arora, M., Kaushik, S.D., Ekbote, S.N., 2019. Enhanced Critical Current Density (Jc) and Fractural Strength of Low and High Eu Level Doped Bare Bulk (Bi, Pb)-2223 Rods for Cryogenic Applications. Physica C: Superconductivity and its applications, 562, 78-84.
  • Rahal, H.T., Awad, R., Abdel-Gaber, A.M., Marhaba, S., Abou-Aly, A.I., 2019. A Comparative Study on the Influence of the Addition of Different Nano-Oxide Particles on the Thermopower of (Bi,Pb)-2223 Superconductor. Applied Physics A, 125, 365.
  • Rouessac, V., Desgardin, G. ve Gomina, M., 1997. Influence of the Sinter-Forging Conditions on the Mechanical Properties of Textured Bulk (Bi,Pb)-2223 Ceramics. Physica C, 282-287, 2573-2574.
  • Safran, S., Kılıc¸ A., Ozturk, O., 2017. Effect of Re-Pelletization on Structural, Mechanical and Superconducting Properties of BSCCO Superconductors. Journal of Materials Science: Materials in Electronics, 28, 1799- 1803.
  • Schneemeyer, L.F., Waszczak, J.V., Siegrist, T., van Dover, R.B., Rupp, L.W., 1987. Superconductivity in YBa2Cu3O7 Single Crystals. Nature, 328, 601-603.
  • Silver, T., Pan, A.V., Ionescu, M., Qin, M.J., Dou, S.X., 2002. Developments in High Temperature Superconductivity. Annual Reports Section “C” (Physical Chemistry) , 98, 323–373.
  • Tran, D.H., Pham, A.T., Le, T.M., Anh, D.T.K., Phan, Y.T., Man, N.K., Pham, D., Kang, W.N., 2019. Enhanced Flux Pinning Properties in Bi1.6Pb0.4Sr2−xKxCa2Cu3O10+δ Compounds. Journal of Materials Science: Materials in Electronics, 30, 8233-8238.
  • Ulgen, A.T., Turgay, T., Terzioglu, C., Yildirim, G., Oz, M., 2018. Role of Bi/Tm Substitution in Bi-2212 System on Crystal Structure Quality, Pair Wave Function and Polaronic States. Journal of Alloys and Compounds, 764, 755-766.
  • Ulgen, A.T., Yildirim, G., 2019. Degradation in Fundamental Characteristic Features of Bi-2212 Superconducting Ceramic Material with Sr/Ti Partial Substitution. Journal of Materials Science: Materials in Electronics, 30, 8268-8277.
  • Yamamoto, A., Takeshita, N., Terakura, C., Tokura, Y., 2015. High Pressure Effects Revisited for the Cuprate Superconductor Family with Highest Critical Temperature. Nature Communications,6,8990.
  • Zouaoui, M., Ghattas, A., Annabi, M., Ben Azzouz, F. ve Ben Salem, M., 2008. Effect of Nano-Size ZrO2 Addition on the Flux Pinning Properties of (Bi, Pb)-2223 Superconductor. Superconductor Science and Technology, 21, 125005.

An Investigation on the Influence of Niobium Adding on (Bi,Pb)-2223 Bulk Superconducting System

Year 2020, , 1188 - 1194, 15.10.2020
https://doi.org/10.17714/gumusfenbil.749048

Abstract

A series of bismuth-based bulk superconducting materials with niobium-added Bi1.85Pb0.35Sr1.9Ca2.1Cu3.1Oδ were synthesized by the conventional solid state reaction method. The phases and microstructural analysis of the samples were carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of niobium addition on electrical and magnetic properties was determined by resistivity and magnetization measurements, respectively. There was no significant reduction in critical temperature by the addition of niobium. Also the room temperature resistivity of the niobium added samples decreased compared to the pristine sample. The critical current density values of the samples with Nb addition were lower than the pure sample.

Project Number

FM19AYP1

References

  • Albiss, B.A., Obaidat, I.M., Gharaibehb, M., Ghamlouche, H., Obeidat, S.M., 2010. Impact of Addition of Magnetic Nanoparticles on Vortex Pinning and Microstructure Properties of Bi–Sr–Ca–Cu–O Superconductor. Solid State Communications, 150, 1542-1547.
  • Asghari, R., Arslan, L.C., Sedghi, H., Naghshara, H., 2017. Synthesis and Characterization of Nb Substitution on (Bi-Pb)-2223 Superconductors. Journal of Low Temperature Physics, 189, 15–26.
  • Bean, C.P., 1962. Magnetization of Hard Superconductors. Physical Review Letters, 8, 250.
  • Bilgili, O., Kocabaş, K., 2014. Effect of Nb Addition on Magnetic, Structural and Superconducting Properties of (Bi, Pb)-2223 Superconductors. Journal of Materials Science: Materials in Electronics, 25, 2889–2897.
  • Cagliero, S., Agostino, A., Bonometti, E., Truccato, M., 2007. Electrical Transport Effects due to Oxygen Content Modifications in a Bi2Sr2CaCu2O8+δ Superconducting Whisker. Superconductor Science and Technology, 20, 667.
  • Cursino, E., Schmool, D.S., Garitaonandia, J.S. ve Rodrigues, D., 2009. Artificial Pinning Center Studies in Bi2212 Tapes and Bulks With Zirconium Oxide Inclusion. IEEE Transactions on Applied Superconductivity, 19, 3, 3516-3519.
  • de Vera, F.I., Bardolaza, H., Arcilla, C., Sarmago, R., 2019. Effect of In2O3 on the Grain Connectivity and Superconducting Behavior of Bi2Sr2−xInxCaCu2O8+d. SN Applied Sciences, 1, 96.
  • Ghazanfari, N., Kılıç, A., Gencer, A., Özkan, H., 2007. Effects of Nb2O5 Addition on Superconducting Properties of BSCCO. Solid State Communications, 144, 210-214.
  • Grivel, J.C. ve Flukiger, R., 1996. Factors Influencing the Apparent Activation Energy for the Formation of the (Bi,Pb)2Sr2Ca2Cu3O10+δ Compound. Journal of Alloys and Compounds, 241, 127-133.
  • Gul, I.H., Rehman, M.A., Ali, M., Maqsood, A., 2005. Effect of Vanadium and Barium on the Bi-based (2223) Superconductors. Physica C: Superconductivity and its Applications, 432, 71-80.
  • Guner, S.B., Zalaoglu, Y., Turgay, T., Ozyurt, O., Ulgen, A.T., Dogruer, M., Yildirim, G., 2019. A Detailed Research for Determination of Bi/Ga Partial Substitution Effect in Bi-2212 Superconducting Matrix on Crucial Characteristic Features. Journal of Alloys and Compounds, 772, 388-398.
  • Harabor, A., Rotaru, P., Harabor, N.A., 2019. Effect of Ni Substitute in Off-Stoichiometric Bi(Pb)-Sr-Ca-Cu(Ni)-O Superconductor. Excess Conductivity, XRD Analysis and Thermal Behaviour. Ceramics International, 45, 2742-2750.
  • Ishii, A. ve Hatano, T., 2000. Preparation of High Quality Bi2Sr2CaCu2O8+δ Thin Films on a MgO Substrate by Pulsed Laser Ablation and Post-Annealing – Recrystallization of Films Accompanying In-Plane Rotation of a and b Axes. Physica C, 340, 173-177.
  • Kishio, K., Komiya, S., Motohira, N., Kitazawa, K. ve Yamafuji, K., 1991. A Novel Method to Avoid Demagnetization Effect in Magnetization Studies of Bi2Sr2CaCu2O8 Single Crystals with the Field Perpendicular to the CuO2 Plane. Physica C, 185, 2377-2378.
  • Maeda, H., Tanaka, Y., Fukutomi, M. ve Asano, T., 1988. A New High-Tc Oxide Superconductor without a Rare Earth Element. Japanese Journal of Applied Physics, 27, 2, L209-L210.
  • Mohd Suib, N.R., Abu Bakar, I.P., Ibrahim, N.B., Abd-Shukor, R., 2019. Critical Current Density and AC Susceptibility of Bi1.6Pb0.4Sr2Ca2Cu3O10 Superconductor with Ni0.5Zn0.5Fe2O4 Nanomaterial. Journal of Superconductivity and Novel Magnetism, 32, 145-150.
  • Padam, G.K., Arora, M., Kaushik, S.D., Ekbote, S.N., 2019. Enhanced Critical Current Density (Jc) and Fractural Strength of Low and High Eu Level Doped Bare Bulk (Bi, Pb)-2223 Rods for Cryogenic Applications. Physica C: Superconductivity and its applications, 562, 78-84.
  • Rahal, H.T., Awad, R., Abdel-Gaber, A.M., Marhaba, S., Abou-Aly, A.I., 2019. A Comparative Study on the Influence of the Addition of Different Nano-Oxide Particles on the Thermopower of (Bi,Pb)-2223 Superconductor. Applied Physics A, 125, 365.
  • Rouessac, V., Desgardin, G. ve Gomina, M., 1997. Influence of the Sinter-Forging Conditions on the Mechanical Properties of Textured Bulk (Bi,Pb)-2223 Ceramics. Physica C, 282-287, 2573-2574.
  • Safran, S., Kılıc¸ A., Ozturk, O., 2017. Effect of Re-Pelletization on Structural, Mechanical and Superconducting Properties of BSCCO Superconductors. Journal of Materials Science: Materials in Electronics, 28, 1799- 1803.
  • Schneemeyer, L.F., Waszczak, J.V., Siegrist, T., van Dover, R.B., Rupp, L.W., 1987. Superconductivity in YBa2Cu3O7 Single Crystals. Nature, 328, 601-603.
  • Silver, T., Pan, A.V., Ionescu, M., Qin, M.J., Dou, S.X., 2002. Developments in High Temperature Superconductivity. Annual Reports Section “C” (Physical Chemistry) , 98, 323–373.
  • Tran, D.H., Pham, A.T., Le, T.M., Anh, D.T.K., Phan, Y.T., Man, N.K., Pham, D., Kang, W.N., 2019. Enhanced Flux Pinning Properties in Bi1.6Pb0.4Sr2−xKxCa2Cu3O10+δ Compounds. Journal of Materials Science: Materials in Electronics, 30, 8233-8238.
  • Ulgen, A.T., Turgay, T., Terzioglu, C., Yildirim, G., Oz, M., 2018. Role of Bi/Tm Substitution in Bi-2212 System on Crystal Structure Quality, Pair Wave Function and Polaronic States. Journal of Alloys and Compounds, 764, 755-766.
  • Ulgen, A.T., Yildirim, G., 2019. Degradation in Fundamental Characteristic Features of Bi-2212 Superconducting Ceramic Material with Sr/Ti Partial Substitution. Journal of Materials Science: Materials in Electronics, 30, 8268-8277.
  • Yamamoto, A., Takeshita, N., Terakura, C., Tokura, Y., 2015. High Pressure Effects Revisited for the Cuprate Superconductor Family with Highest Critical Temperature. Nature Communications,6,8990.
  • Zouaoui, M., Ghattas, A., Annabi, M., Ben Azzouz, F. ve Ben Salem, M., 2008. Effect of Nano-Size ZrO2 Addition on the Flux Pinning Properties of (Bi, Pb)-2223 Superconductor. Superconductor Science and Technology, 21, 125005.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hasan Ağıl 0000-0002-1574-3232

Project Number FM19AYP1
Publication Date October 15, 2020
Submission Date June 8, 2020
Acceptance Date September 30, 2020
Published in Issue Year 2020

Cite

APA Ağıl, H. (2020). Niyobyum İlavesinin (Bi, Pb)-2223 Bulk Süperiletken Sistemine Etkisi Üzerine Bir Araştırma. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(4), 1188-1194. https://doi.org/10.17714/gumusfenbil.749048