Research Article
BibTex RIS Cite

Using computer-aided software for intake manifold material selection

Year 2021, , 925 - 933, 15.07.2021
https://doi.org/10.17714/gumusfenbil.836539

Abstract

A four-stroke internal combustion engine consists of more than 30 000 parts. Many of these parts can be exposed to high temperatures, high pressure and high stresses due to the operating conditions of engines. In material selection, it is necessary to know the structural properties of the materials used in the parts as well as their behaviour under operating conditions such as force, pressure, temperature. Considering that a cycle is completed in 0.025 seconds on average, it is seen how important the material selection for the production of most engine parts used is in terms of system stability. Another important factor is economy in material selection. Nowadays, material properties are improving day by day, computer-aided software programs are used for material selection. In this study, a computer-aided material selection program named CES Selector, which analyses the technical properties of the materials as well as the economics of the material, was used despite many computer-aided software programs. By using CES Selector program, material selection of the intake manifold, which directly affects engine performance and combustion efficiency, was made. As a result, it was decided that A356 aluminium alloy cast into gravity mold and T6 heat treated was the most suitable material.

References

  • Amen, R. and Vomacka, P. (2001). Case-based reasoning as a tool for materials selection. Materials and Design 22, 353-358. https://doi.org/10.1016/S0261-3069(00)00105-9.
  • Ashby, M. F., Bréchet, Y. J., Cebon, D. and Salvo, L. (2004). Selection strategies for materials and processes. Materials and Design, 25, (1), 51-67, https://doi.org/10.1016/S0261-3069(03)00159-6.
  • Ashby, M., Shercliff, H. and Cebon, D. (2007). Materials engineering, science, processing and design. Elsevier.
  • Askeland, D. (2009). The science and engineering of materials. (5th ed ed.). London: Thomson.
  • Azo Material, 2021. https://www.azom.com/article.aspx?
  • ArticleID=2863#:~:text=Mechanical%20Properties%20of%20Aluminium&text=It%20can%20also%20be%20cast,for%20some%20heat%2Dtreatable%20alloys.
  • Balakrishna, A., Rao, D., Srinivas, J. and Satish, P. (2007). Computer aided material selection processes in concurrent engineering using neural networks. Journal of the Institution of Engineers (India): Mechanical Engineering Division 88, 20–3.
  • Birtok-Băneasă, C., Rațiu, S., Puțan, V. and Zgripcea, L. (2019). Experimental studies regarding the influence of the intake manifold material on the thermodynamics processes in the internal combustion engines. Materials Science and Engineering, 477, https://doi.org/10.1088/1757-899X/477/1/012006.
  • Bovea, M. and Vidal, R. (2004). Materials selection for sustainable product design: a case study of wood based furniture eco-design. Materials Desing, 25, 111-116. https://doi.org/10.1016/j.matdes.2003.09.018
  • Cebon, D. and Ashby, M. (2005). Data systems for optimal material selection. International Symposium on Materials Databases , 3-15. Tokyo, Japan.
  • Chandekar, A. and Debnath, B. (1 September 2020). Effect of intake manifold design on the mixing of air and bio-CNG in a port-injected dual fuel diesel engine. Journal of Thermal Analysis and Calorimetry, 2295-2309, https://doi.org/10.1007/s10973-020-09591-1.
  • Chen, X. and Jiang, G. (2008). Manufacturing of aluminum alloy air intake manifold by tilted casting. Special Casting and Nonferrous Alloys, 9, (28), 728-729, doi:10.3870/tzzz.2008.09.025.
  • Çetin, A. ve Sayer, S. (2019). Emme manifoldu üretiminde gelişen teknolojik uygulamalar. Mühendis ve Makina, 60, (696), 251-261.
  • Epsan, 2021. (http://epsan.com.tr/wp-content/uploads/2019/10/epsan_teknik_kataloglar.pdf).
  • Ferguson, C. R., and Kirkpatrick, A. T. (2001). Internal combustion engines: applied thermosciences. New York: John Wiley & Sons.
  • Fındık, F., Çolak, M. ve Aslanlar, S. (2015). Materials selection for car bumper with a conventional method as well as CES selector software. 1st International Conference on Engineering and Natural Sciences (ICENS 2015),199-208
  • Fındık, F., Okumuş, S. C. ve Çolak, M. (2018). Malzeme seçimi ve uygulamaları. Seçkin Yayınevi.
  • Giudice, F., La, R. G. and Risitano, A. (2005). Materials selection in the life cycle design process: a method to integrate mechanical and environmental performances in optimal choice. Materials&Method, 26, 9–20. https://doi.org/10.1016/j.matdes.2004.04.006
  • Goldsberry, C. (2006). Design Focus: Computer modeling and how it helps drive material selection. Retrieved from Plastics Today. https://www.plasticstoday.com/design-focus-computer-modeling-and-how-it-helps-drive-material-selection.
  • Heywood, J. B. (1988). Internal combustion engine fundamentals. Singapore: McGraw-Hill.
  • Hickman, G. F. and Schumacher, D. (2005). Polyamide intake manifold shell bonding. SAE Intenational SAE World Congress, (Detroit, Michigan), https://doi.org/10.4271/2005-01-1518.
  • International Energy Agency. (2020, 11 26). Extended world energy balances (Edition 2020). https://doi.org/10.1787/88fd1acf-en.
  • Jain, A., Porpathamn, E. and Thipse, S. S. (2021). Numerical and simulation approach for design of variable valve actuation mechanism on single-cylinder diesel engine. Advances in IC Engines and Combustion Technology, 821-839. https://doi.org/10.1007/978-981-15-5996-9_63.
  • Jalham, I. (2006). Computer-aided quality function deployment method for material selection. Int J Comput Appl Technol,26, 190-196. https://doi.org/10.1504/IJCAT.2006.010764.
  • Kandemir, K. ve Can, A. Ç. (2003). Otomotiv endüstrisinde magnezyum alaşımlarının kullanım potansiyeli. Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, 1, (9), 37-45.
  • Karana, E., Hekkert, P. and Kandachar, P. (2008). Material considerations in product design: a survey on crucial material aspects used by product designers. Materials and Design, 1081-1089. https://doi.org/10.1016/j.matdes.2007.06.002.
  • Pulkraberk, W. W. (2016). İçten yanmalı motorlar mühendislik temelleri, İzmir: Güven.
  • Ramalhete, P., Senos, A. and Aguiar, C. (2010). Digital tools for material selection in product design. Materials and Design, 2275–22, https://doi.org/10.1016/j.matdes.2009.12.013.
  • Röchling Automotive, 2021. (https://www.roechling.com/automotive/products-solutions/propulsion/air-intake-manifold-systems
  • Safgönül, B., Ergeneman, M., Arslan, E. ve Soruşbay, C. (2008). İçten yanmalı motorlar. İstanbul: Birsen Yayınevi. Sapuan, S. (2001). A knowledge-based system for materials selection in mechanical engineering design. Materials Design, 687-695, doi:10.1016/S0261-3069(00)00108-4.
  • Sapuan, S., Jacob, M., Mustapha, F. and Ismail, N. (2002). A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components. Materials and Design, 2, 701-708, doi:10.1016/S0261-3069(02)00074-2.
  • Sensoy Abdullah Tahir, C. M. (2019). Optimal material selection for total hip implant: a finite element case study. Arabia Journal for Science and Engineering, https://doi.org/10.1007/s13369-019-04088-y.
  • Shackelford, F. (2009). Introduction to materials science for engineers. London: Pearson.
  • Simav, O. ve Ustabaş, A. (2017). Otomotiv endüstrisindeki muhtemel dönüşümün ekonomik boyutu: Türkiye örneği. Internatıonal Conference On Eurasıan Economıes 2017, 310-319, İstanbul.
  • UNFCCC. (2020, 11 30). Retrieved from what is the Kyoto Prtocol. https://unfccc.int/kyoto_protocol
  • Vijaya Kumar, K., Shailesh, P., Srinivasa Raghavan, K., Ranga Babu, J. and Ravi Kumar, P. (2020). Performance and emission analysis of diesel engine with design modifications on piston crown. International Journal of Ambient Energy, 41, 1336-1341, https://doi.org/10.1080/01430750.2018.1517664

Emme manifoldu malzeme seçiminde bilgisayar destekli yazılım kullanılması

Year 2021, , 925 - 933, 15.07.2021
https://doi.org/10.17714/gumusfenbil.836539

Abstract

Dört zamanlı bir içten yanmalı motor 30 000’den fazla parçadan oluşmaktadır. Bu parçalar birçoğu, motorlardaki çalışma prensipleri nedeniyle yüksek sıcaklık, yüksek basınç, yüksek gerilmelere maruz kalabilmektedir. Motorlarda gerçekleşen çevrimlerin yüksek motor performansı ve yüksek enerji verimliliği için kararlı yapıda olması gerekmektedir. Bir çevrimin ortalama 0.025 saniyede tamamlandığı düşünülecek olursa, kullanılan çoğu motor parçasının üretimi için gerekli malzeme seçiminin, sistem kararlığı açısından ne kadar önemli olduğu görülmektedir. Malzeme seçiminde parçalarda kullanılan malzemelerin yapısal özellikleri kadar kuvvet, basınç, sıcaklık gibi çalışma şartları altındaki davranışlarının da iyi bilinmesi gerekmektedir. Malzeme seçimini önemli kılan bir diğer hususta ekonomikliktir. Malzeme özelliklerinin her geçen gün iyileştirildiği günümüzde, malzeme seçimi için bilgisayar destekli yazılım programları kullanılmaktadır. Bu çalışmada birçok bilgisayar destekli yazılım programına rağmen malzemelerin teknik özelikleriyle birlikte malzemenin ekonomikliğini de analiz eden CES Selector isimli bilgisayar destekli malzeme seçim programı kullanılmıştır. Bu program kullanılarak, motor performansına ve yanma verimine direk etki eden emme manifoldunun malzeme seçimi yapılmıştır. Sonuç olarak kokil kalıba dökülen, T6 ısıl işlemi yapılmış A356 alüminyum alaşımının en uygun malzeme olduğuna karar verilmiştir.

References

  • Amen, R. and Vomacka, P. (2001). Case-based reasoning as a tool for materials selection. Materials and Design 22, 353-358. https://doi.org/10.1016/S0261-3069(00)00105-9.
  • Ashby, M. F., Bréchet, Y. J., Cebon, D. and Salvo, L. (2004). Selection strategies for materials and processes. Materials and Design, 25, (1), 51-67, https://doi.org/10.1016/S0261-3069(03)00159-6.
  • Ashby, M., Shercliff, H. and Cebon, D. (2007). Materials engineering, science, processing and design. Elsevier.
  • Askeland, D. (2009). The science and engineering of materials. (5th ed ed.). London: Thomson.
  • Azo Material, 2021. https://www.azom.com/article.aspx?
  • ArticleID=2863#:~:text=Mechanical%20Properties%20of%20Aluminium&text=It%20can%20also%20be%20cast,for%20some%20heat%2Dtreatable%20alloys.
  • Balakrishna, A., Rao, D., Srinivas, J. and Satish, P. (2007). Computer aided material selection processes in concurrent engineering using neural networks. Journal of the Institution of Engineers (India): Mechanical Engineering Division 88, 20–3.
  • Birtok-Băneasă, C., Rațiu, S., Puțan, V. and Zgripcea, L. (2019). Experimental studies regarding the influence of the intake manifold material on the thermodynamics processes in the internal combustion engines. Materials Science and Engineering, 477, https://doi.org/10.1088/1757-899X/477/1/012006.
  • Bovea, M. and Vidal, R. (2004). Materials selection for sustainable product design: a case study of wood based furniture eco-design. Materials Desing, 25, 111-116. https://doi.org/10.1016/j.matdes.2003.09.018
  • Cebon, D. and Ashby, M. (2005). Data systems for optimal material selection. International Symposium on Materials Databases , 3-15. Tokyo, Japan.
  • Chandekar, A. and Debnath, B. (1 September 2020). Effect of intake manifold design on the mixing of air and bio-CNG in a port-injected dual fuel diesel engine. Journal of Thermal Analysis and Calorimetry, 2295-2309, https://doi.org/10.1007/s10973-020-09591-1.
  • Chen, X. and Jiang, G. (2008). Manufacturing of aluminum alloy air intake manifold by tilted casting. Special Casting and Nonferrous Alloys, 9, (28), 728-729, doi:10.3870/tzzz.2008.09.025.
  • Çetin, A. ve Sayer, S. (2019). Emme manifoldu üretiminde gelişen teknolojik uygulamalar. Mühendis ve Makina, 60, (696), 251-261.
  • Epsan, 2021. (http://epsan.com.tr/wp-content/uploads/2019/10/epsan_teknik_kataloglar.pdf).
  • Ferguson, C. R., and Kirkpatrick, A. T. (2001). Internal combustion engines: applied thermosciences. New York: John Wiley & Sons.
  • Fındık, F., Çolak, M. ve Aslanlar, S. (2015). Materials selection for car bumper with a conventional method as well as CES selector software. 1st International Conference on Engineering and Natural Sciences (ICENS 2015),199-208
  • Fındık, F., Okumuş, S. C. ve Çolak, M. (2018). Malzeme seçimi ve uygulamaları. Seçkin Yayınevi.
  • Giudice, F., La, R. G. and Risitano, A. (2005). Materials selection in the life cycle design process: a method to integrate mechanical and environmental performances in optimal choice. Materials&Method, 26, 9–20. https://doi.org/10.1016/j.matdes.2004.04.006
  • Goldsberry, C. (2006). Design Focus: Computer modeling and how it helps drive material selection. Retrieved from Plastics Today. https://www.plasticstoday.com/design-focus-computer-modeling-and-how-it-helps-drive-material-selection.
  • Heywood, J. B. (1988). Internal combustion engine fundamentals. Singapore: McGraw-Hill.
  • Hickman, G. F. and Schumacher, D. (2005). Polyamide intake manifold shell bonding. SAE Intenational SAE World Congress, (Detroit, Michigan), https://doi.org/10.4271/2005-01-1518.
  • International Energy Agency. (2020, 11 26). Extended world energy balances (Edition 2020). https://doi.org/10.1787/88fd1acf-en.
  • Jain, A., Porpathamn, E. and Thipse, S. S. (2021). Numerical and simulation approach for design of variable valve actuation mechanism on single-cylinder diesel engine. Advances in IC Engines and Combustion Technology, 821-839. https://doi.org/10.1007/978-981-15-5996-9_63.
  • Jalham, I. (2006). Computer-aided quality function deployment method for material selection. Int J Comput Appl Technol,26, 190-196. https://doi.org/10.1504/IJCAT.2006.010764.
  • Kandemir, K. ve Can, A. Ç. (2003). Otomotiv endüstrisinde magnezyum alaşımlarının kullanım potansiyeli. Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, 1, (9), 37-45.
  • Karana, E., Hekkert, P. and Kandachar, P. (2008). Material considerations in product design: a survey on crucial material aspects used by product designers. Materials and Design, 1081-1089. https://doi.org/10.1016/j.matdes.2007.06.002.
  • Pulkraberk, W. W. (2016). İçten yanmalı motorlar mühendislik temelleri, İzmir: Güven.
  • Ramalhete, P., Senos, A. and Aguiar, C. (2010). Digital tools for material selection in product design. Materials and Design, 2275–22, https://doi.org/10.1016/j.matdes.2009.12.013.
  • Röchling Automotive, 2021. (https://www.roechling.com/automotive/products-solutions/propulsion/air-intake-manifold-systems
  • Safgönül, B., Ergeneman, M., Arslan, E. ve Soruşbay, C. (2008). İçten yanmalı motorlar. İstanbul: Birsen Yayınevi. Sapuan, S. (2001). A knowledge-based system for materials selection in mechanical engineering design. Materials Design, 687-695, doi:10.1016/S0261-3069(00)00108-4.
  • Sapuan, S., Jacob, M., Mustapha, F. and Ismail, N. (2002). A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components. Materials and Design, 2, 701-708, doi:10.1016/S0261-3069(02)00074-2.
  • Sensoy Abdullah Tahir, C. M. (2019). Optimal material selection for total hip implant: a finite element case study. Arabia Journal for Science and Engineering, https://doi.org/10.1007/s13369-019-04088-y.
  • Shackelford, F. (2009). Introduction to materials science for engineers. London: Pearson.
  • Simav, O. ve Ustabaş, A. (2017). Otomotiv endüstrisindeki muhtemel dönüşümün ekonomik boyutu: Türkiye örneği. Internatıonal Conference On Eurasıan Economıes 2017, 310-319, İstanbul.
  • UNFCCC. (2020, 11 30). Retrieved from what is the Kyoto Prtocol. https://unfccc.int/kyoto_protocol
  • Vijaya Kumar, K., Shailesh, P., Srinivasa Raghavan, K., Ranga Babu, J. and Ravi Kumar, P. (2020). Performance and emission analysis of diesel engine with design modifications on piston crown. International Journal of Ambient Energy, 41, 1336-1341, https://doi.org/10.1080/01430750.2018.1517664
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şükran Efe 0000-0002-4033-6786

Murat Çolak 0000-0002-8255-5987

Publication Date July 15, 2021
Submission Date December 7, 2020
Acceptance Date June 6, 2021
Published in Issue Year 2021

Cite

APA Efe, Ş., & Çolak, M. (2021). Emme manifoldu malzeme seçiminde bilgisayar destekli yazılım kullanılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 925-933. https://doi.org/10.17714/gumusfenbil.836539