Research Article
BibTex RIS Cite

Some properties of analytic functions involving the Mittag-Leffler function

Year 2021, , 384 - 393, 15.04.2021
https://doi.org/10.17714/gumusfenbil.864653

Abstract

The Mittag-Leffler function was defined by Swedish mathematican Magnus Gustav Mittag-Leffler in 1903. Later, researchers generalized this function by including different parameters. In 2015, Bansal and Prajabat normalized the Mittag-Leffler function and get several sufficient conditions so that the Mittag-Leffler function has certain geometric properties such as univalency, starlikeness, convexity and close-to-convexity in the open unit disc. After this research paper, the Mittag-Leffler function became popular in the studies of univalent functions theory. In this current study, we define a new class of analytic functions involving the Mittag-Leffler function denoted by〖 S〗_(α,β)^γ (k,A,B). We also introduce a subclass of this function class, which is involving negative coefficients. We introduce coefficient estimates, growth and distortion theorems for this function class. Moreover, we obtain integral mean inequalities for this class. We also conclude that for special values of parameters, the classes introduced in this paper are reduced to the several function classes which are defined by researchers.

References

  • Bansal, D. and Prajapat, J. K. (2016). Certain geometric properties of the Mittag-Leffler functions. Complex Variables and Elliptic Equations, 61(3), 338-350. https://doi.org/10.1080/17476933.2015.1079628
  • Bharati, R., Parvatham, R. and Swaminathan, A. (1997). On subclasses of uniformly convex functions and corresponding class of starlike functions. Tamkang Journal of Mathematics, 28(1), 17-32.
  • Duren, P. L. (1983). Univalent Functions. Springer, 259, XIV- 384.
  • Goodman, A.W. (1991). On Uniformly Starlike Functions. Journal of Mathematical Analysis and Applications, 155(2), 364-370.
  • Gorenflo, R., Kilbas, A.A., Mainardi, F. and Rogosin, S. (2014). Mittag-Leffler functions, related topics and applications. Springer, XIV- 443. https://doi.org/10.1007/978-3-662-43930-2
  • Janowski, W. (1973). Some Extremal problems for certain families of analytic functions I. Annales Polonici Mathematici, 28, 297–326. https://doi.org/10.4064/ap-28-3-297-326
  • Kanas, S. and Wisniowska, A. (2000). Conic domains and starlike functions. Revue Roumaine des Mathematiques Pures et Appliquees, 45(4), 647-657.
  • Littlewood, J. E. (1925). On ınequalities in the theory of functions. Proceedings of the London Mathematical Society, 23(2), 481-519. https://doi.org/10.1112/plms/s2-23.1.481
  • Mittag-Leffler, G. (1903). Sur la Nouvelle Fonction Eα(x). Comptes rendus de l'Académie des sciences Paris, 137, 554-558.
  • Prabhakar, T. R. (1971). A singular ıntegral equation with a generalized Mittag-Leffler function in the Kernel. Yokohama Mathematical Journal, 19, 7-15.
  • Raducanu, D. (2017). Third-Order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions. Mediterranean Journal of Mathematics, 14:167. https://doi.org.10.1007/s00009-017-0969-8
  • Rønning, F. (1993). Uniformly Convex functions and a corresponding class of starlike functions. Proceedings of the American Mathematical Society, 118(1), 189-196. https://doi.org/10.1090/S0002-9939-1993-1128729-7
  • Silverman, H. (1975). Univalent Functions with negative coefficients. Proceedings of the American Mathematical Society, 51, 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  • Wiman, A. (1905). Über den fundamentalsatz in der teorie der funktionen E_a(x). Acta Mathematica, 29, 191-201. https://doi.org.10.1007/BF02403202

Mittag-Leffler fonksiyonunu içeren analitik fonksiyonların bazı özellikleri

Year 2021, , 384 - 393, 15.04.2021
https://doi.org/10.17714/gumusfenbil.864653

Abstract

Mittag-Leffler fonksiyonu 1903 yılında İsveçli matematikçi Magnus Gustav Mittag-Leffler tarafından tanımlanmıştır. Daha sonra, araştırmacılar farklı parametreler ilave ederek bu fonksiyonu genelleştirmiştir. 2015 yılında, Bansal ve Prajabat, Mittag-Leffler fonksiyonunu normalize etmiş ve bu fonksiyonun açık birim diskte yalınkatlık, yıldızıllık, konvekslik ve konvekse yakınlık gibi belirli geometrik özelliklere sahip olduğunu gösteren yeterli koşullar elde etmiştir. Bu araştırma makalesinden sonra, Mittag-Leffler fonksiyonu yalınkat fonksiyonlar teorisi çalışmalarında popüler olmuştur. Bu güncel çalışmada, S_(α,β)^γ (k,A,B) ile gösterilen Mittag-Leffler fonksiyonunu içeren analitik fonksiyonların yeni bir sınıfı tanımlanmıştır. Ayrıca, bu fonksiyon sınıfının negatif katsayıları içeren bir alt sınıfı da tanımlanmıştır. Bu fonksiyon sınıfı için katsayı tahminleri, büyüme ve distorsiyon teoremleri elde edilmiştir. Bununla birlikte, bu sınıf için integral eşitsizlikleri de elde edilmiştir. Ayrıca parametrelerin özel değerleri için, bu makalede tanımlanan sınıfların, araştırmacılar tarafından tanımlanan bazı fonksiyon sınıflarına indirgendiği sonucuna varılmıştır.

References

  • Bansal, D. and Prajapat, J. K. (2016). Certain geometric properties of the Mittag-Leffler functions. Complex Variables and Elliptic Equations, 61(3), 338-350. https://doi.org/10.1080/17476933.2015.1079628
  • Bharati, R., Parvatham, R. and Swaminathan, A. (1997). On subclasses of uniformly convex functions and corresponding class of starlike functions. Tamkang Journal of Mathematics, 28(1), 17-32.
  • Duren, P. L. (1983). Univalent Functions. Springer, 259, XIV- 384.
  • Goodman, A.W. (1991). On Uniformly Starlike Functions. Journal of Mathematical Analysis and Applications, 155(2), 364-370.
  • Gorenflo, R., Kilbas, A.A., Mainardi, F. and Rogosin, S. (2014). Mittag-Leffler functions, related topics and applications. Springer, XIV- 443. https://doi.org/10.1007/978-3-662-43930-2
  • Janowski, W. (1973). Some Extremal problems for certain families of analytic functions I. Annales Polonici Mathematici, 28, 297–326. https://doi.org/10.4064/ap-28-3-297-326
  • Kanas, S. and Wisniowska, A. (2000). Conic domains and starlike functions. Revue Roumaine des Mathematiques Pures et Appliquees, 45(4), 647-657.
  • Littlewood, J. E. (1925). On ınequalities in the theory of functions. Proceedings of the London Mathematical Society, 23(2), 481-519. https://doi.org/10.1112/plms/s2-23.1.481
  • Mittag-Leffler, G. (1903). Sur la Nouvelle Fonction Eα(x). Comptes rendus de l'Académie des sciences Paris, 137, 554-558.
  • Prabhakar, T. R. (1971). A singular ıntegral equation with a generalized Mittag-Leffler function in the Kernel. Yokohama Mathematical Journal, 19, 7-15.
  • Raducanu, D. (2017). Third-Order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions. Mediterranean Journal of Mathematics, 14:167. https://doi.org.10.1007/s00009-017-0969-8
  • Rønning, F. (1993). Uniformly Convex functions and a corresponding class of starlike functions. Proceedings of the American Mathematical Society, 118(1), 189-196. https://doi.org/10.1090/S0002-9939-1993-1128729-7
  • Silverman, H. (1975). Univalent Functions with negative coefficients. Proceedings of the American Mathematical Society, 51, 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  • Wiman, A. (1905). Über den fundamentalsatz in der teorie der funktionen E_a(x). Acta Mathematica, 29, 191-201. https://doi.org.10.1007/BF02403202
There are 14 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Asena Çetinkaya 0000-0002-8815-5642

Oya Mert 0000-0002-8791-3341

Publication Date April 15, 2021
Submission Date January 19, 2021
Acceptance Date February 23, 2021
Published in Issue Year 2021

Cite

APA Çetinkaya, A., & Mert, O. (2021). Mittag-Leffler fonksiyonunu içeren analitik fonksiyonların bazı özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 384-393. https://doi.org/10.17714/gumusfenbil.864653