Photodegradation of crystal violet dyestuff on kaolinite-BiFeO3 nanocomposite under different light irradiations
Year 2021,
, 815 - 827, 15.07.2021
Eda Keleş Güner
,
Fatih İçer
Agah Özdemir
,
Bülent Çağlar
Abstract
Kaolinite-BiFeO3 (KBFO) nanocomposite was prepared by decorating of perovskite structured BiFeO3 (BFO) nanoparticles on kaolinite surface. Photocatalytic activities of pure kaolin (K), bare BFO and obtained KBFO nanocomposite were evaluated by examining the photocatalytic degradation of cationic crystal violet dyestuff (CV) under UVA and visible light irradiations (GB). KBFO nanocomposite exhibited higher photocatalytic activity than other catalysts and it was determined that photodegradation followed pseudo first order kinetic. In addition, the optimal values were determined by investigating the effects of experimental parameters such as pH, initial dye concentration and catalyst amount values over photocatalysis, The photocatalytic degradation efficiencies of KV on KBFO at pH 9, presence of 10mgL-1 initial dye concentration and 100mg catalyst under UVA and GB light regions were determined as 84% and 89%, respectively. To determine the contribution of the reactive species responsible for the photocatalytic degradation of KV on the KBFO nanocomposite, radical scavenging experiments were performed and a possible mechanism was proposed. According to radical scavenging experiments, hydroxyl radicals have a major role in the photocatalytic degradation of CV.
References
- Abazari, R., Mahjoub, A. R. and Sanati, S. (2016). Magnetically recoverable Fe3O4-ZnO/AOT nanocomposites: synthesis of a core–shell structure via a novel and mild route for photocatalytic degradation of toxic dyes, Journal of Molecular Liquids 223,1133–1142. https://doi.org/10.1016/j.molliq.2016.09.038.
- Al-Ekabi, H. and Serpone, N. (1988). Kinetic studies in heterogeneous photocatalysis. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO2 supported on a glass matrix, The Journal of Physical Chemistry 92, 5726. https://doi.org/10.1021/j100331a036.
- Basavarajappa, P.S., Seethya, N. H. B., Ganganagappa, N., Eshwaraswamy, K. B. and Reddy, K. R. (2018). Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles, ChemistrySelect, 9025-9033. https://doi:10.1002/slct.201801198.
- Bozkurt Çırak, B., Çağlar, B., Kılınç, T., Morkoç Karadeniz, S., Erdoğan, Y., Kılıç, S., Kahveci, E., Ekinci A. E. and Çırak, Ç. (2019). Synthesis and characterization of ZnO nanorice decorated TiO2 nanotubes for enhanced photocatalytic activity, Materials Research Bulletin 109, 160–167.
https://doi.org/10.1016/j.materresbull.2018.09.039.
- Chang, J., Ma, J., Ma, Q., Zhang, D, Qiao, N., Hu, M. and Ma, H. (2016). Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite, Applied Clay Science 119, 132–140. https://doi.org/10.1016/j.clay.2015.06.038.
- Çağlar, B., Keleş Güner E., Keleş, K., Özdokur, K. V., Çubuk, O., Çoldur, F., Çağlar S., Topçu, C. and Tabak, A. (2018). Fe3O4 nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities Solid State Sciences 83, 122–136. https://doi.org/10.1016/j.solidstatesciences.2018.07.013.
- Devi, G., Nithya, P. M., Abraham, C. and Kavit, R. (2017). Influence of surface metallic silver deposit and surface fluorination onthe photocatalytic activity of rutile TiO2 for the degradation of crystalviolet a cationic dye under UV light irradiation. Materials Today Communications 10, 1-13http://dx.doi.org/10.1016/j.mtcomm.2016.11.001.
- Doğan, M., Karaoğlu, M. H. and Alkan, M. (2009). Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite, Journal of Hazardous Materials 165, 1142-1151. https://doi.org/10.1016/j.jhazmat.2008.10.101.
- Dong, X., Ren, B., Sun, Z., Li, C., Zhang, X., Kong, M., Zheng, S. and Dionysiou, D. D. (2019). Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation, Applied Catalysis B Environmental 253, 206–217. https://doi.org/10.1016/j.apcatb.2019.04.052.
- Du, C., Song, Y., Shi, S., Jiang, B., Yang, J. and Xiao, S. (2020). Preparation and characterization of a novel Fe3O4-graphene-biochar composite for crystal violet adsorption, Science of the Total Environment 711, 134662. https://doi.org/10.1016/j.scitotenv.2019.134662.
- Fei, F., Gao, Z., Wu, H., Wurendaodi, W., Zhao, S. and Asuha, S. (2020). Facile solid-state synthesis of Fe3O4/kaolinite nanocomposites for enhanced dye adsorption, Journal of Solid State Chemistry 291, 121655. https://doi.org/10.1016/j.jssc.2020.121655.
- Gao, F., Chen, X. Y., Yin, K. B., Dong, S., Ren, Z. F., Yuan, F., Yu, T., Zou, Z. G. and Liu, J. M. (2007). Visible‐light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Advanced Materials 19, 2889-2892. https://doi.org/10.1002/adma.200602377.
- Gopi, S., Balakrishnan, P., Pius, A. and Thomas, S. (2017). Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of indigo carmine, Carbohydrate Polymers 165, 115–122. https://doi.org/10.1016/j.carbpol.2017.02.046.
- Guo, S., Zhang, G. and Wang, J. (2014). Photo-Fenton degradation of rhodamine B using Fe2O3–Kaolin as heterogeneous catalyst: Characterization, process optimization and mechanism, Journal of Colloid Interface Science 433, 1–8. https://doi.org/10.1016/j.jcis.2014.07.017.
- Gusain, R., Gupta, K., Joshi, P. and Khatri, O. P. (2019). Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review, Advances in Colloid and Interface Science, 272, 102009. DOI: 10.1016/j.cis.2019.102009.
- Haruna, A., Abdulkadir, I. and Idris, S.O. (2020). Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes, Heliyon 6, e03237. https://doi.org/10.1016/j.heliyon.2020.e03237.
- Huang, H., Zhang J., Jiang L. and Zang, Z. (2017). Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B, Journal of Alloys and Compounds 718, 112-115. https://doi.org/10.1016/j.jallcom.2017.05.132.
- Jiang, Y. R., Lin, H. P., Chung, W. H., Dai, Y. M., Lin, W. Y. and Chen, C. C. (2015). Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet, Journal of Hazardous Materials 283, 787–805, http://dx.doi.org/10.1016/j.jhazmat.2014.10.025.
- Karlsson, H. L., Cronholm, P., Gustafsson, J. and Möller, L. (2008). Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes, Chemical Research in Toxicology 21, 9, 1726-1732. https://doi.org/10.1021/tx800064j.
- Keleş Güner, E. ve Çağlar, B. (2020). CuxZn(1-x)O Kaolin Nanokompozitinin Sentezi, Karakterizasyonu ve Fotokatalitik Aktivitesi, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13(2), 369-383. https://doi.org/10.18185/erzifbed.703223.
- Khani, A., Sohrabı, M.R., Khosravı, M. and Davallo, M. (2013). Enhancing puri_cation of an azo dye solution in nanosized zero-valent iron-ZnO photocatalyst system using subsequent semibatch packed-bed reactor, Turkish Journal of Engineering & Environmental Sciences 37, 91-99. https://doi.org/10.3906/muh-1201-6.
- Kızıltaş, H. and Tekin, T. (2020). Increasing of photocatalytic performance of TiO2 nanotubes by doping AgS and CdS, Chemical Engineering Communications 204 (8), 852-857. https://doi.org/10.1080/00986445.2017.1304387.
- Kızıltaş, H., Tekin, T. and Tekin, D. (2020). Preparation and characterization of recyclable Fe3O4@SiO2@TiO2 composite photocatalyst, and investigation of the photocatalytic activity, Chemical Engineering Communications, 1-13. https://doi.org/10.1080/00986445.2020.1743694.
- Kumar, K. V., Porkodi, K. and Rocha, F. (2008) Langmuir-Hinshelwood kinetics - a theoretical study, Catalysis Communications, 9, 82–84.
- Li, C., Sun, Z., Song, A., Dong, X., Zheng, S. and Dionysiou, D. D. (2018). Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum, Applied Catalysis B Environmental 236, 76–87. https://doi.org/10.1016/j.apcatb.2018.04.083.
- Mohanty, S., Moulick, S. and Kumar, Maji, S. (2020). Adsorption/photodegradation of crystal violet (basic dye) from aqueous solution by hydrothermally synthesized titanate nanotube (TNT), Journal of Water Process Engineering 37, 101428. https://doi.org/10.1016/j.jwpe.2020.101428.
- Moniruddin, M., Ilyassov, B., Zhao, X., Smith, E., Serikov, T., Ibrayev, N. and Nuraje, N. (2018). Recent progress on perovskite materials in photovoltaic and water splitting applications. Materials Today Energy 7, 246–259. https://doi.org/10.1016/j.mtener.2017.10.005.
- Nandi, B. K., Goswami, A., Das, A. K, Mondal, B. and Purkait, M. K. (2008). Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent, Separation Science and Technology 43, 1382–1403. https://doi.org/10.1080/01496390701885331.
- Ortiz, E., Gómez-Chávez, V., Cortés-Romero, C.M., Solís, H., Ruiz-Ramos, R. and Loera-Serna, S. (2016). Degradation of indigo carmine using advanced oxidation processes: synergy effects and toxicological study, Journal of Environmental Protection Science 7, 1693–1706. https://doi.org/10.4236/jep.2016.712137.
- Priya R., Stanly, S., Dhanalekshmi, S. B., Mohammad, F., Al-Lohedan, H.A, Oh, W. C. and Sagadevan, S. (2020). Comparative studies of crystal violet dye removal between semiconductor nanoparticles and natural adsorbents, Optik - International Journal for Light and Electron Optics 206, 164281. https://doi.org/10.1016/j.ijleo.2020.164281.
- Safi, R. and Shokrollahi, H. (2012). Physics, chemistry and synthesis methods of nanostructured bismuth ferrite (BiFeO3) as a ferroelectro-magnetic material, Progress in Solid State Chemistry 40, 6-15. https://doi.org/10.1016/j.progsolidstchem.2012.03.001.
- Shawky, A., El-Sheikh, S. M., Rashed, M. N., Abdo, S. M. and El-Dosoqy, T. I. (2019). Exfoliated kaolinite nanolayers as an alternative photocatalyst with superb activity, Journal of Environmental Chemical Engineering 7 (3), 103174. https://doi.org/10.1016/j.jece.2019.103174.
- Thiam, A., Sirés, I., Garrido, J.A., Rodríguez, R.M. and Brillas, E. (2015). Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes, Journal of Hazardous Materials 290, 34–42. http://dx.doi.org/10.1016/j.jhazmat.2015.02.050.
- Uyguner, C.S. and Bekbolet, M. (2004). Photocatalytic degradation of natural organic matter: Kinetic considerations and light intensity dependence, International Journal of Photoenergy 6 (2), 73-80.
- Wang, W., Tadé, M. O. and Shao, Z. (2015). Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment, Chemical Society Reviews 44, 5371–5408. https://doi.org/10.1039/C5CS00113G.
- Vinoth, R., Karthik P., Muthamizhchelvan, C., Neppolian, B. and Ashokkumar, M. (2016). Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts, Physical Chemistry Chemical Physics 18, 5179-5191. https://doi.org/10.1039/c5cp08041j.
- Volnistem, E.A., Bini, R.D., Silva, D.M., Rosso, J.M., Dias, G.S., Cótica, L.F. and Santos, I.A. (2020). Intensifying the photocatalytic degradation of methylene blue by the formation of BiFeO3/Fe3O4 nanointerfaces, Ceramics International 46, 18768–18777. https://doi.org/10.1016/j.ceramint.2020.04.194.
- Zou, C. Y., Liu, S. Q., Shen, Z., Zhang, Y., Jiang, N. S., Ji, W. C. (2017). Efficient removal of ammonia with a novel graphene‐supported BiFeO3 as a reusable photocatalyst under visible light, Chinese Journal of Catalysis 38, 20–28. https://doi.org/10.1016/S1872‐2067(17)62752‐9.
Farklı ışık kaynakları altında kristal viyole boyar maddesinin kaolin-BiFeO3 nanokompozit üzerinde fotobozunması
Year 2021,
, 815 - 827, 15.07.2021
Eda Keleş Güner
,
Fatih İçer
Agah Özdemir
,
Bülent Çağlar
Abstract
Kaolin yüzeyine perovskit yapılı BiFeO3 (BFO) nanoparçacıklarının yerleştirilmesiyle Kaolin-BiFeO3 (KBFO) nanokompoziti hazırlandı. Saf kaolin (K), saf BFO ve hazırlanan KBFO nanokompozitin fotokatalitik aktiviteleri UVA ve görünür bölge ışımaları altında katyonik bir boyar madde olan kristal viyole (KV)’nin fotokatalitik bozunması incelenerek değerlendirildi. KBFO nanokompozitinin diğer katalizörlere nispeten daha yüksek fotokatalitik aktivite sergilediği ve fotobozunmanın yalancı birinci dereceden kinetik izlediği belirlendi. Ayrıca pH, başlangıç boya konsantrasyonu ve katalizör miktarı gibi deneysel parametrelerin fotokataliz reaksiyonuna etkileri incelenerek en uygun değerleri tespit edildi. pH 9’da 10mgL-1 başlangıç boya konsantrasyonunda ve 100 mg katalizör varlığında KV’nin KBFO katalizörü üzerindeki fotokatalitik bozunma verimleri UVA ve GB ışınları altında sırasıyla % 84 ve % 89 olarak belirlendi. KV'nin KBFO nanokompozit üzerindeki fotokatalitik bozunmasından sorumlu olan reaktif türlerinin katkısını belirlemek için radikal süpürücü deneyler yapıldı ve olası mekanizma önerildi. Yapılan radikal süpürücü deneylerine göre hidroksil radikallerinin KV’nin fotokatalitik bozunmasında başlıca role sahip olduğu tespit edildi.
References
- Abazari, R., Mahjoub, A. R. and Sanati, S. (2016). Magnetically recoverable Fe3O4-ZnO/AOT nanocomposites: synthesis of a core–shell structure via a novel and mild route for photocatalytic degradation of toxic dyes, Journal of Molecular Liquids 223,1133–1142. https://doi.org/10.1016/j.molliq.2016.09.038.
- Al-Ekabi, H. and Serpone, N. (1988). Kinetic studies in heterogeneous photocatalysis. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO2 supported on a glass matrix, The Journal of Physical Chemistry 92, 5726. https://doi.org/10.1021/j100331a036.
- Basavarajappa, P.S., Seethya, N. H. B., Ganganagappa, N., Eshwaraswamy, K. B. and Reddy, K. R. (2018). Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles, ChemistrySelect, 9025-9033. https://doi:10.1002/slct.201801198.
- Bozkurt Çırak, B., Çağlar, B., Kılınç, T., Morkoç Karadeniz, S., Erdoğan, Y., Kılıç, S., Kahveci, E., Ekinci A. E. and Çırak, Ç. (2019). Synthesis and characterization of ZnO nanorice decorated TiO2 nanotubes for enhanced photocatalytic activity, Materials Research Bulletin 109, 160–167.
https://doi.org/10.1016/j.materresbull.2018.09.039.
- Chang, J., Ma, J., Ma, Q., Zhang, D, Qiao, N., Hu, M. and Ma, H. (2016). Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite, Applied Clay Science 119, 132–140. https://doi.org/10.1016/j.clay.2015.06.038.
- Çağlar, B., Keleş Güner E., Keleş, K., Özdokur, K. V., Çubuk, O., Çoldur, F., Çağlar S., Topçu, C. and Tabak, A. (2018). Fe3O4 nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities Solid State Sciences 83, 122–136. https://doi.org/10.1016/j.solidstatesciences.2018.07.013.
- Devi, G., Nithya, P. M., Abraham, C. and Kavit, R. (2017). Influence of surface metallic silver deposit and surface fluorination onthe photocatalytic activity of rutile TiO2 for the degradation of crystalviolet a cationic dye under UV light irradiation. Materials Today Communications 10, 1-13http://dx.doi.org/10.1016/j.mtcomm.2016.11.001.
- Doğan, M., Karaoğlu, M. H. and Alkan, M. (2009). Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite, Journal of Hazardous Materials 165, 1142-1151. https://doi.org/10.1016/j.jhazmat.2008.10.101.
- Dong, X., Ren, B., Sun, Z., Li, C., Zhang, X., Kong, M., Zheng, S. and Dionysiou, D. D. (2019). Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation, Applied Catalysis B Environmental 253, 206–217. https://doi.org/10.1016/j.apcatb.2019.04.052.
- Du, C., Song, Y., Shi, S., Jiang, B., Yang, J. and Xiao, S. (2020). Preparation and characterization of a novel Fe3O4-graphene-biochar composite for crystal violet adsorption, Science of the Total Environment 711, 134662. https://doi.org/10.1016/j.scitotenv.2019.134662.
- Fei, F., Gao, Z., Wu, H., Wurendaodi, W., Zhao, S. and Asuha, S. (2020). Facile solid-state synthesis of Fe3O4/kaolinite nanocomposites for enhanced dye adsorption, Journal of Solid State Chemistry 291, 121655. https://doi.org/10.1016/j.jssc.2020.121655.
- Gao, F., Chen, X. Y., Yin, K. B., Dong, S., Ren, Z. F., Yuan, F., Yu, T., Zou, Z. G. and Liu, J. M. (2007). Visible‐light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Advanced Materials 19, 2889-2892. https://doi.org/10.1002/adma.200602377.
- Gopi, S., Balakrishnan, P., Pius, A. and Thomas, S. (2017). Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of indigo carmine, Carbohydrate Polymers 165, 115–122. https://doi.org/10.1016/j.carbpol.2017.02.046.
- Guo, S., Zhang, G. and Wang, J. (2014). Photo-Fenton degradation of rhodamine B using Fe2O3–Kaolin as heterogeneous catalyst: Characterization, process optimization and mechanism, Journal of Colloid Interface Science 433, 1–8. https://doi.org/10.1016/j.jcis.2014.07.017.
- Gusain, R., Gupta, K., Joshi, P. and Khatri, O. P. (2019). Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review, Advances in Colloid and Interface Science, 272, 102009. DOI: 10.1016/j.cis.2019.102009.
- Haruna, A., Abdulkadir, I. and Idris, S.O. (2020). Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes, Heliyon 6, e03237. https://doi.org/10.1016/j.heliyon.2020.e03237.
- Huang, H., Zhang J., Jiang L. and Zang, Z. (2017). Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B, Journal of Alloys and Compounds 718, 112-115. https://doi.org/10.1016/j.jallcom.2017.05.132.
- Jiang, Y. R., Lin, H. P., Chung, W. H., Dai, Y. M., Lin, W. Y. and Chen, C. C. (2015). Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet, Journal of Hazardous Materials 283, 787–805, http://dx.doi.org/10.1016/j.jhazmat.2014.10.025.
- Karlsson, H. L., Cronholm, P., Gustafsson, J. and Möller, L. (2008). Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes, Chemical Research in Toxicology 21, 9, 1726-1732. https://doi.org/10.1021/tx800064j.
- Keleş Güner, E. ve Çağlar, B. (2020). CuxZn(1-x)O Kaolin Nanokompozitinin Sentezi, Karakterizasyonu ve Fotokatalitik Aktivitesi, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13(2), 369-383. https://doi.org/10.18185/erzifbed.703223.
- Khani, A., Sohrabı, M.R., Khosravı, M. and Davallo, M. (2013). Enhancing puri_cation of an azo dye solution in nanosized zero-valent iron-ZnO photocatalyst system using subsequent semibatch packed-bed reactor, Turkish Journal of Engineering & Environmental Sciences 37, 91-99. https://doi.org/10.3906/muh-1201-6.
- Kızıltaş, H. and Tekin, T. (2020). Increasing of photocatalytic performance of TiO2 nanotubes by doping AgS and CdS, Chemical Engineering Communications 204 (8), 852-857. https://doi.org/10.1080/00986445.2017.1304387.
- Kızıltaş, H., Tekin, T. and Tekin, D. (2020). Preparation and characterization of recyclable Fe3O4@SiO2@TiO2 composite photocatalyst, and investigation of the photocatalytic activity, Chemical Engineering Communications, 1-13. https://doi.org/10.1080/00986445.2020.1743694.
- Kumar, K. V., Porkodi, K. and Rocha, F. (2008) Langmuir-Hinshelwood kinetics - a theoretical study, Catalysis Communications, 9, 82–84.
- Li, C., Sun, Z., Song, A., Dong, X., Zheng, S. and Dionysiou, D. D. (2018). Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum, Applied Catalysis B Environmental 236, 76–87. https://doi.org/10.1016/j.apcatb.2018.04.083.
- Mohanty, S., Moulick, S. and Kumar, Maji, S. (2020). Adsorption/photodegradation of crystal violet (basic dye) from aqueous solution by hydrothermally synthesized titanate nanotube (TNT), Journal of Water Process Engineering 37, 101428. https://doi.org/10.1016/j.jwpe.2020.101428.
- Moniruddin, M., Ilyassov, B., Zhao, X., Smith, E., Serikov, T., Ibrayev, N. and Nuraje, N. (2018). Recent progress on perovskite materials in photovoltaic and water splitting applications. Materials Today Energy 7, 246–259. https://doi.org/10.1016/j.mtener.2017.10.005.
- Nandi, B. K., Goswami, A., Das, A. K, Mondal, B. and Purkait, M. K. (2008). Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent, Separation Science and Technology 43, 1382–1403. https://doi.org/10.1080/01496390701885331.
- Ortiz, E., Gómez-Chávez, V., Cortés-Romero, C.M., Solís, H., Ruiz-Ramos, R. and Loera-Serna, S. (2016). Degradation of indigo carmine using advanced oxidation processes: synergy effects and toxicological study, Journal of Environmental Protection Science 7, 1693–1706. https://doi.org/10.4236/jep.2016.712137.
- Priya R., Stanly, S., Dhanalekshmi, S. B., Mohammad, F., Al-Lohedan, H.A, Oh, W. C. and Sagadevan, S. (2020). Comparative studies of crystal violet dye removal between semiconductor nanoparticles and natural adsorbents, Optik - International Journal for Light and Electron Optics 206, 164281. https://doi.org/10.1016/j.ijleo.2020.164281.
- Safi, R. and Shokrollahi, H. (2012). Physics, chemistry and synthesis methods of nanostructured bismuth ferrite (BiFeO3) as a ferroelectro-magnetic material, Progress in Solid State Chemistry 40, 6-15. https://doi.org/10.1016/j.progsolidstchem.2012.03.001.
- Shawky, A., El-Sheikh, S. M., Rashed, M. N., Abdo, S. M. and El-Dosoqy, T. I. (2019). Exfoliated kaolinite nanolayers as an alternative photocatalyst with superb activity, Journal of Environmental Chemical Engineering 7 (3), 103174. https://doi.org/10.1016/j.jece.2019.103174.
- Thiam, A., Sirés, I., Garrido, J.A., Rodríguez, R.M. and Brillas, E. (2015). Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes, Journal of Hazardous Materials 290, 34–42. http://dx.doi.org/10.1016/j.jhazmat.2015.02.050.
- Uyguner, C.S. and Bekbolet, M. (2004). Photocatalytic degradation of natural organic matter: Kinetic considerations and light intensity dependence, International Journal of Photoenergy 6 (2), 73-80.
- Wang, W., Tadé, M. O. and Shao, Z. (2015). Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment, Chemical Society Reviews 44, 5371–5408. https://doi.org/10.1039/C5CS00113G.
- Vinoth, R., Karthik P., Muthamizhchelvan, C., Neppolian, B. and Ashokkumar, M. (2016). Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts, Physical Chemistry Chemical Physics 18, 5179-5191. https://doi.org/10.1039/c5cp08041j.
- Volnistem, E.A., Bini, R.D., Silva, D.M., Rosso, J.M., Dias, G.S., Cótica, L.F. and Santos, I.A. (2020). Intensifying the photocatalytic degradation of methylene blue by the formation of BiFeO3/Fe3O4 nanointerfaces, Ceramics International 46, 18768–18777. https://doi.org/10.1016/j.ceramint.2020.04.194.
- Zou, C. Y., Liu, S. Q., Shen, Z., Zhang, Y., Jiang, N. S., Ji, W. C. (2017). Efficient removal of ammonia with a novel graphene‐supported BiFeO3 as a reusable photocatalyst under visible light, Chinese Journal of Catalysis 38, 20–28. https://doi.org/10.1016/S1872‐2067(17)62752‐9.